Specification for Structural Steel Buildings

FOR COMMITTEE USE ONLY
PUBLIC REVIEW DRAFT DATED March 1, 2009

Supersedes the
Specification for Structural Steel Buildings
dated March 9, 2005
and all previous versions of this specification.

Approved by the AISC Committee on Specifications and issued by the
AISC Board of Directors

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
One East Wacker Drive, Suite 700
Chicago, Illinois 60601-1802

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
PREFACE (to be revised)
(This Preface is not part of ANSI/AISC 360-??, Specification for Structural Steel Buildings, but is included for informational purposes only.)

This Specification has been based upon past successful usage, advances in the state of knowledge, and changes in design practice. The 2005 American Institute of Steel Construction’s Specification for Structural Steel Buildings for the first time provides an integrated treatment of Allowable Stress Design (ASD) and Load and Resistance Factor Design (LRFD), and thus combines and replaces earlier Specifications that treated the two design methods separately. As indicated in Chapter B of the Specification, designs can be made according to either ASD or LRFD provisions.

This Specification has been developed as a consensus document to provide a uniform practice in the design of steel-framed buildings and other structures. The intention is to provide design criteria for routine use and not to provide specific criteria for infrequently encountered problems, which occur in the full range of structural design.

This Specification is the result of the consensus deliberations of a committee of structural engineers with wide experience and high professional standing, representing a wide geographical distribution throughout the United States. The committee includes approximately equal numbers of engineers in private practice and code agencies, engineers involved in research and teaching, and engineers employed by steel fabricating and producing companies. The contributions and assistance of more than 50 additional professional volunteers working in ten task committees are also hereby acknowledged.

The Symbols, Glossary and Appendices to this Specification are an integral part of the Specification. A non-mandatory Commentary has been prepared to provide background for the Specification provisions and the user is encouraged to consult it. Additionally, non-mandatory User Notes are interspersed throughout the Specification to provide concise and practical guidance in the application of the provisions.

The reader is cautioned that professional judgment must be exercised when data or recommendations in the Specification are applied, as described more fully in the disclaimer notice preceding this Preface.

This Specification was approved by the Committee on Specifications,
The Committee gratefully acknowledges the following task committee members for their contribution to this document.

Farid Alfawakhiri Peter Marshall
Georges Axmann Brian Meacham
Joseph Bohinsky Saul Mednick
Bruce Butler James Milke
Charles Carter Heath Mitchell
Carol Drucker Jeffrey Packer
W. Samuel Easterling Frederick Palmer
Michael Engstrom Dhiren Panda
M. Thomas Ferrell Teoman Pekoz
Christopher Foley Carol Pivonka
Arvind Goverdhan Clinton Rex
Jerome Hajjar John Ruddy
Tom Harrington David Samuelson
James Harris Thomas Schlafly
Steven Herth James Swanson
Todd Helwig Emile Troup
Richard Henige Chia-Ming Uang
Christopher Hewitt Sriramulu Vinnakota

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
TABLE OF CONTENTS

SYMBOLS

GLOSSARY

SPECIFICATION

A. GENERAL PROVISIONS

A1. Scope
- 1. Low-Seismic Applications
- 2. High-Seismic Applications
- 3. Nuclear Applications

A2. Referenced Specifications, Codes and Standards

A3. Material
- 1. Structural Steel Materials
 - 1a. ASTM Designations
 - 1b. Unidentified Steel
 - 1c. Rolled Heavy Shapes
 - 1d. Built-Up Heavy Shapes
- 2. Steel Castings and Forgings
- 3. Bolts, Washers and Nuts
- 4. Anchor Rods and Threaded Rods
- 5. Filler Metal and Flux for Welding
- 6. Stud Shear Connectors

A4. Structural Design Drawings and Specifications

B. DESIGN REQUIREMENTS

B2. Loads and Load Combinations

B3. Design Basis
- 1. Required Strength
- 2. Limit States
- 3. Design for Strength using Load and Resistance Factor Design (LRFD)
- 4. Design for Strength using Allowable Strength Design (ASD)
- 5. Design for Stability
- 6. Design of Connections
- 6a. Simple Connections
- 6b. Moment Connections
- 7. Moment Redistribution in Beams
- 8. Diaphragms and Collectors
- 9. Design for Serviceability
- 10. Design for Ponding
- 11. Design for Fatigue
- 12. Design for Fire Conditions
- 13. Design for Corrosion Effects
- 14. Anchorage to Concrete

B4. Member Properties
1. Classification of Sections for Local Buckling
 1a. Unstiffened Elements
 1b. Stiffened Elements
2. Design Wall Thickness for HSS
3. Gross and Net Area Determination
 3a. Gross Area
 3b. Net Area
B5. Fabrication, Erection and Quality Control
B6. Evaluation of Existing Structures

C. DESIGN FOR STABILITY
 C1. General Stability Requirements
 C2. Calculation of Required Strengths
 1. General Analysis Requirements
 2. Consideration of Initial Imperfections
 2a. Direct Modeling of Imperfections
 2b. Use of Notional Loads to Represent Imperfections
 3. Adjustments to Stiffness
 C3. Calculation of Available Strengths

D. DESIGN OF MEMBERS FOR TENSION
 D1. Slenderness Limitations
 D2. Tensile Strength
 D3. Effective Net Area
 D4. Built-Up Members
 D5. Pin-Connected Members
 1. Tensile Strength
 2. Dimensional Requirements
 D6. Eyebars
 1. Tensile Strength
 2. Dimensional Requirements

E. DESIGN OF MEMBERS FOR COMPRESSION
 E2. Effective Length
 E3. Flexural Buckling of Members without Slender Elements
 E4. Torsional and Flexural-Torsional Buckling of Members without Slender Elements
 E5. Single Angle Compression Members
 E6. Built-Up Members
 1. Compressive Strength
 2. Dimensional Requirements
 E7. Members with Slender Elements
 1. Slender Unstiffened Elements, Q_s
 2. Slender Stiffened Elements, Q_a

F. DESIGN OF MEMBERS FOR FLEXURE
 F1. General Provisions
 F2. Doubly Symmetric Compact I-Shaped Members and Channels Bent about their Major Axis
F3. Doubly Symmetric I-Shaped Members with Compact Webs and Noncompact or Slender Flanges Bent about Their Major Axis

F4. Other I-Shaped Members with Compact or Noncompact Webs Bent about Their Major Axis

F5. Doubly Symmetric and Singly Symmetric I-Shaped Members with Slender Webs Bent about Their Major Axis

F6. I-Shaped Members and Channels Bent about Their Minor Axis

F7. Square and Rectangular HSS and Box-Shaped Members

F8. Round HSS

F9. Tees and Double Angles Loaded in the Plane of Symmetry

F10. Single Angles

F11. Rectangular Bars and Rounds

F12. Unsymmetrical Shapes

F13. Proportions of Beams and Girders

Strength Reductions for Members with Holes in the
Tension Flange

2. Proportioning Limits for I-Shaped Members
3. Cover Plates
4. Built-Up Beams

G. DESIGN OF MEMBERS FOR SHEAR
G2. Members with Unstiffened or Stiffened Webs
 1. Shear Strength
 2. Transverse Stiffeners
G3. Tension Field Action
 1. Limits on the Use of Tension Field Action
 2. Shear Strength with Tension Field Action
 3. Transverse Stiffeners
G4. Single Angles
G5. Rectangular HSS and Box-Shaped Members
G6. Round HSS
G7. Weak Axis Shear in Singly and Doubly Symmetric Shapes
G8. Beams and Girders with Web Openings

H. DESIGN OF MEMBERS FOR COMBINED FORCES AND TORSION
H1. Doubly and Singly Symmetric Members Subject to Flexure and Axial Force
 1. Doubly and Singly Symmetric Members Subject to Flexure and Compression
 2. Doubly and Singly Symmetric Members Subject to Flexure and Tension
 3. Doubly Symmetric Rolled Compact Members Subject to Single Axis Flexure and Compression
H2. Unsymmetric and Other Members Subject to Flexure and Axial Force
H3. Members Subject to Torsion and Combined Torsion, Flexure, Shear and/or Axial force
 1. Round and Rectangular HSS Subject to Torsion
 2. HSS Subject to Combined Torsion, Shear, Flexure and Axial Force
 3. Non-HSS Members Subject to Torsion and Combined Stress
H4. Rupture of Flanges with Holes Subject to Tension

I. DESIGN OF COMPOSITE MEMBERS
 1. Concrete and Steel Reinforcement
 2. Nominal Strength of Composite Sections
 2a. Plastic Stress Distribution Method
 2b. Strain-Compatibility Method
 3. Material Limitations
 4. Limitations on Composite Sections for Local Buck-
5. Steel Anchors

12. Axially Loaded Members
 1. Encased Composite Columns
 1a. Limitations
 1b. Compressive Strength
 1c. Tensile Strength
 1d. Shear Strength
 1e. Detailing Requirements
 2. Filled Composite Columns
 2a. Limitations
 2b. Compressive Strength
 2c. Tensile Strength
 2d. Shear Strength

13. Flexural Members
 1. General
 1a. Effective Width
 1b. Strength During Construction
 2. Composite Beams with Steel Headed Stud or Steel Channel Anchors
 2a. Positive Flexural Strength
 2b. Negative Flexural Strength
 2c. Composite Beams with Formed Steel Deck
 2d. Load Transfer between Steel Beam and Concrete Slab
 2e. Shear Strength
 3. Concrete-Encased and Filled Members
 3a. Flexural Strength
 3b. Shear Strength

14. Combined Axial Force and Flexure

15. Load Transfer
 1. General
 2. Load Allocation
 2a. External Load Applied to Steel Section
 2b. External Load Applied to Concrete
 2c. External Load Applied Concurrently to Steel and Concrete
 3. Load Transfer Mechanisms
 3a. Direct Bearing
 3b. Shear Connection
 3c. Direct Bond Interaction
 4. Detailing Requirements
 4a. Encased Composite Members
 4b. Filled Composite Members

16. Composite Diaphragms and Collector Beams

17. Steel anchors
 1. General
 2. Steel Anchors in Composite Beams
 2a. Strength of Headed Stud Anchors
 2b. Strength of Hot-Rolled Steel Channel Anchors
2c. Required Number of Anchors
2d. Steel Anchor Placement and Spacing
3. Steel Anchors in Components
3a. Shear Strength of Steel-Headed Stud Anchors in Composite Components
3b. Tensile Strength of Steel-Headed Stud Anchors in Composite Components
3c. Strength of Steel-Headed Stud Anchors for Interaction of Shear and Tension in Composite Components
3d. Shear Strength of Steel Channel Anchors in Composite Components
3d. Detailing Requirements in Composite Components

I8. Special Cases

J. DESIGN OF CONNECTIONS

1. Design Basis
2. Simple Connections
3. Moment Connections
4. Compression Members with Bearing Joints
5. Splices in Heavy Sections
6. Weld Access Holes
7. Placement of Welds and Bolts
8. Bolts in Combination with Welds
9. High-Strength Bolts in Combination with Rivets
10. Limitations on Bolted and Welded Connections

J2. Welds

1. Groove Welds
1a. Effective Area
1b. Limitations
2. Fillet Welds
2a. Effective Area
2b. Limitations
3. Plug and Slot Welds
3a. Effective Area
3b. Limitations
4. Strength
5. Combination of Welds
6. Filler Metal Requirements
7. Mixed Weld Metal

J3. Bolts and Threaded Parts

1. High-Strength Bolts
2. Size and Use of Holes
3. Minimum Spacing
4. Minimum Edge Distance
5. Maximum Spacing and Edge Distance
6. Tension and Shear Strength of Bolts and Threaded Parts
7. Combined Tension and Shear in Bearing-Type Connections

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
8. High-Strength Bolts in Slip-Critical Connections
9. Combined Tension and Shear in Slip-Critical Connections
10. Bearing Strength at Bolt Holes
11. Special Fasteners
12. Tension Fasteners

J4. Affected Elements of Members and Connecting Elements
 1. Strength of Elements in Tension
 2. Strength of Elements in Shear
 3. Block Shear Strength
 4. Strength of Elements in Compression
 5. Strength of Elements in Flexure

J5. Fillers
 1. Welded
 1a. Thin Filler Plates
 1b. Thick Filler Plates
 2. Bolted

J6. Splices

J7. Bearing Strength

J8. Column Bases and Bearing on Concrete

J9. Anchor Rods and Embedments

J10. Flanges and Webs with Concentrated Forces
 1. Flange Local Bending
 2. Web Local Yielding
 3. Web Crippling
 4. Web Sidesway Buckling
 5. Web Compression Buckling
 6. Web Panel Zone Shear
 7. Unframed Ends of Beams and Girders
 8. Additional Stiffener Requirements for Concentrated Forces
 9. Additional Doubler Plate Requirements for Concentrated Forces

K. DESIGN OF HSS AND BOX MEMBER CONNECTIONS

K1. Concentrated Forces on HSS
 1. Definitions of Parameters
 2. Round HSS
 3. Rectangular HSS

K2. HSS-to-HSS Truss Connections
 1. Definitions of Parameters
 2. Round HSS
 3. Rectangular HSS
 4. Welds to Branches

K3. HSS-to-HSS Moment Connections
 1. Definitions of Parameters
 2. Round HSS
 3. Rectangular HSS
L. DESIGN FOR SERVICEABILITY
 L2. Camber
 L3. Deflections
 L4. Drift
 L5. Vibration
 L6. Wind-Induced Motion
 L7. Expansion and Contraction
 L8. Connection Slip

M. FABRICATION, ERECTION AND QUALITY CONTROL
 M1. Shop and Erection Drawings
 M2. Fabrication
 1. Cambering, Curving, and Straightening
 2. Thermal Cutting
 3. Planing of Edges
 4. Welded Construction
 5. Bolted Construction
 6. Compression Joints
 7. Dimensional Tolerances
 8. Finish of Column Bases
 9. Holes for Anchor Rods
 10. Drain Holes
 11. Requirements for Galvanized Members
 M3. Shop Painting
 1. General Requirements
 2. Inaccessible Surfaces
 3. Contact Surfaces
 4. Finished Surfaces
 5. Surfaces Adjacent to Field Welds
 M4. Erection
 1. Alignment of Column Bases
 2. Stability and Connections
 3. Alignment
 4. Fit of Column Compression Joints and Base Plates
 5. Field Welding
 6. Field Painting
 M5. Quality Control
 1. Cooperation
 2. Rejections
 3. Inspection of Welding
 4. Inspection of Slip-Critical High-Strength Bolted Connections
 5. Identification of Steel

N. QUALITY CONTROL AND QUALITY ASSURANCE
 N1. Scope
 N2. Fabricator’s and Erector’s Quality Control Program
 N3. Fabricator’s and Erector’s Documents
 N4. Inspection and Nondestructive Testing Personnel
N5. Minimum Requirements for Inspection of Structural Steel Buildings
N6. Minimum Requirements for Inspection of Composite Construction
N7. Approved Fabricators and Erectors
N8. Nonconforming Materials and Workmanship

APPENDIX 1. DESIGN BY INELASTIC ANALYSIS
 1.1. General Requirements
 1.2. Ductility Requirements
 1.3. Analysis Requirements

APPENDIX 2. DESIGN FOR PONDING
 2.1. Simplified Design for Ponding
 2.2. Improved Design for Ponding

APPENDIX 3. DESIGN FOR FATIGUE
 3.2. Calculation of Maximum Stresses and Stress Ranges
 3.3. Design Stress Range
 3.4. Bolts and Threaded Parts
 3.5. Special Fabrication and Erection Requirements

APPENDIX 4. STRUCTURAL DESIGN FOR FIRE CONDITIONS
 1. Performance Objective
 2. Design by Engineering Analysis
 3. Design by Qualification Testing
 4. Load Combinations and Required Strength
 4.2. Structural Design for Fire Conditions by Analysis
 1. Design-Basis Fire
 1. Localized Fire
 2. Post-flashover Compartment Fires
 3. Exterior Fires
 4. Active Fire Protection Systems
 2. Temperatures in Structural Systems Under Fire Conditions
 3. Material Strengths at Elevated Temperatures
 1. Thermal Elongation
 2. Mechanical Properties at Elevated Temperatures
 4. Structural Design Requirements
 1. General Structural Integrity
 2. Strength Requirements and Deformation Limits
 3. Methods of Analysis
 3a. Advanced Methods of Analysis
 3b. Simple Methods of Analysis
APPENDIX 5. EVALUATION OF EXISTING STRUCTURES

5.1. General Provisions
5.2. Material Properties
 1. Determination of Required Tests
 2. Tensile Properties
 3. Chemical Composition
 4. Base Metal Notch Toughness
 5. Weld Metal
 6. Bolts and Rivets
5.3. Evaluation by Structural Analysis
 1. Dimensional Data
 2. Strength Evaluation
 3. Serviceability Evaluation
5.4. Evaluation by Load Tests
 1. Determination of Load Rating by Testing
 2. Serviceability Evaluation
5.5. Evaluation Report

APPENDIX 6. STABILITY BRACING FOR COLUMNS AND BEAMS

6.2. Columns
 1. Relative Bracing
 2. Nodal Bracing
6.3. Beams
 1. Lateral Bracing
 1a. Relative Bracing
 1b. Nodal Bracing
 2. Torsional Bracing
 2a. Nodal Bracing
 2b. Continuous Torsional Bracing

APPENDIX 7. ALTERNATE METHODS OF DESIGN FOR STABILITY

7.1. General Stability Requirements
7.2. Effective Length Method
 1. Limitations
 2. Required Strengths
 3. Available Strengths
7.3 First-Order Analysis Method
 1. Limitations
APPENDIX 8. APPROXIMATE SECOND-ORDER ANALYSIS

8.1 Limitations

8.2 Calculation Procedure
 1. Multiplier B_1 for $P-\delta$ Effects
 2. Multiplier B_2 for $P-\Delta$ Effects

COMMENTARY

INTRODUCTION

COMMENTARY GLOSSARY

A. GENERAL PROVISIONS
 A1. Scope
 A2. Referenced Specifications, Codes and Standards
 A3. Material
 1. Structural Steel Materials
 1a. ASTM Designations
 1c. Rolled Heavy Shapes
 2. Steel Castings and Forgings
 3. Bolts, Washers and Nuts
 4. Anchor Rods and Threaded Rods
 5. Filler Metal and Flux for Welding
 A4. Structural Design Drawings and Specifications

B. DESIGN REQUIREMENTS
 B2. Loads and Load Combinations
 B3. Design Basis
 1. Required Strength
 2. Limit States
 3. Design for Strength Using Load and Resistance Factor Design (LRFD)
 4. Design for Strength Using Allowable Strength Design (ASD)
 5. Design for Stability
 6. Design of Connections
 7. Design for Serviceability
 8. Design for Ponding
 9. Design for Fatigue
 10. Design for Fire Conditions
 11. Design for Corrosion Effects
 B4. Member Properties
 2. Design Wall Thickness for HSS
 3. Gross and Net Area Determination
 B5. Fabrication, Erection and Quality Control
 B6. Evaluation of Existing Structures
C. STABILITY ANALYSIS AND DESIGN
 C1. General Stability Requirements
 C2. Calculation of Required Strengths
 1. Method of Analysis
 2. Consideration of Initial Imperfections
 2a. Direct Modeling of Imperfections
 2b. Use of Notional Loads to Represent Imperfections
 Adjustment to Stiffness
 C3. Design of Components

D. DESIGN OF MEMBERS FOR TENSION
 D1. Slenderness Limitations
 D2. Tensile Strength
 D3. Area Determination
 1. Gross Area
 2. Net Area
 3. Effective Net Area
 D4. Built-Up Members
 D5. Pin-Connected Members
 1. Tensile Strength
 2. Dimensional Requirements
 D6. Eyebars
 1. Tensile Strength
 2. Dimensional Requirements

E. DESIGN OF MEMBERS FOR COMPRESSION
 E2. Slenderness Limitations and Effective Length
 E3. Flexural Buckling of Members without Slender Elements
 E4. Torsional and Flexural-Torsional Buckling of Members
 Without Slender Elements
 E5. Single Angle Compression Members
 E6. Built-Up Members
 1. Compressive Strength
 2. Dimensional Requirements
 E7. Members with Slender Elements
 1. Slender Unstiffened Elements, \(Q_s \)
 2. Slender Stiffened Elements, \(Q_a \)

F. DESIGN OF MEMBERS FOR FLEXURE
 F1. General Provisions
 F2. Doubly-Symmetric Compact I-Shaped Members and
 Channels Bent about their Major Axis
 F3. Doubly-Symmetric I-Shaped Members with Compact
 Webs and Noncompact or Slender Flanges Bent about
 their Major Axis
 F4. Other I-Shaped Members with Compact or Noncompact
 Webs Bent about their Major Axis.
 F5. Doubly-Symmetric and Singly-Symmetric I-Shaped
G. DESIGN OF MEMBERS FOR SHEAR

G2. Members with Unstiffened or Stiffened Webs
 1. Shear Strength
 2. Transverse Stiffeners

G3. Tension Field Action
 1. Limits on the Use of Tension Field Action
 2. Shear Strength with Tension Field Action
 3. Transverse Stiffeners

G4. Single Angles

G5. Rectangular HSS and Box Members

G6. Round HSS

G7. Weak Axis Shear in Singly and Doubly Symmetric Shapes

G8. Beams and Girders with Web Openings

H. DESIGN OF MEMBERS FOR COMBINED FORCES AND TORSION

H1. Doubly and Singly Symmetric Members Subject to Flexure and Axial Force
 1. Doubly and Singly Symmetric Members in Flexure and Compression
 2. Doubly and Singly Symmetric Members in Flexure and Tension
 3. Doubly Symmetric Rolled Compact Members in Single Axis Flexure and Compression

H2. Unsymmetric and Other Members Subject to Flexure and Axial Force

H3. Members Under Torsion and Combined Torsion, Flexure,
Shear and/or Axial force

1. Torsional Strength of Round and Rectangular HSS
2. HSS Subject to Combined Torsion, Shear, Flexure and Axial Force
3. Strength of Non-HSS Members Under Torsion and Combined Stress

H4. Tension Flange Rupture under Combined Axial Force and Major Axis Bending

I. DESIGN OF COMPOSITE MEMBERS

 1. Nominal Strength of Composite Sections
 1a. Plastic Stress Distribution Method
 1b. Strain-Compatibility Method
 2. Material Limitations
 3. Shear Connectors

I2. Axially Loaded Members
 1. Encased Composite Columns
 1a. Limitations
 1b. Compressive Strength
 1c. Tensile Strength
 1d. Shear Strength
 1e. Load Transfer
 2. Filled Composite Columns
 2a. Limitations
 2b. Compressive Strength
 2c. Tensile Strength
 2d. Shear Strength
 2e. Load Transfer

I3. Flexural Members
 1. General
 1a. Effective Width
 1b. Strength During Construction
 2. Strength of Composite Beams with Shear Connectors
 2a. Positive Flexural Strength
 2b. Negative Flexural Strength
 2c. Strength of Composite Beams with Formed Steel Deck
 2d. Shear Connectors
 3. Strength of Concrete-Encased and Filled Members

I4. Combined Axial Force and Flexure

I5. Special Cases

J. DESIGN OF CONNECTIONS

 1. Design Basis
 2. Simple Connections
 3. Moment Connections
 4. Compression Members with Bearing Joints
5. Splices in Heavy Sections
6. Beam Copes and Weld Access Holes
7. Placement of Welds and Bolts
8. Bolts in Combination with Welds
9. High-Strength Bolts in Combination with Rivets
10. Limitations on Bolted and Welded Connections

J2. Welds
1. Groove Welds
 1a. Effective Area
 1b. Limitations
2. Fillet Welds
 2a. Effective Area
 2b. Limitations
3. Plug and Slot Welds
 3a. Effective Area
 3b. Limitations
4. Strength
5. Combination of Welds
6. Filler Metal Requirements
7. Mixed Weld Metal

J3. Bolts and Threaded Parts
1. High-Strength Bolts
2. Size and Use of Holes
 3. Minimum Spacing
 4. Minimum Edge Distance
3. Minimum Spacing and Edge Distance
4. Maximum Spacing and Edge Distance
5. Tension and Shear Strength of Bolts and Threaded Parts
6. Combined Tension and Shear in Bearing-Type Connections
7. High-Strength Bolts in Slip-Critical Connections
8. Combined Tension and Shear in Slip-Critical Connections
9. Bearing Strength at Bolt Holes
10. Bearing Strength at Bolt Holes
12. Tension Fasteners

J4. Affected Elements of Members and Connecting Elements
1. Strength of Elements in Tension
2. Strength of Elements in Shear
3. Block Shear Strength
4. Strength of Elements in Compression
5. Strength of Elements in Flexure

J5. Fillers
J6. Splices
J7. Bearing Strength
J8. Column Bases and Bearing on Concrete
J9. Anchor Rods and Embedments
J10. Flanges and Webs with Concentrated Forces
1. Flange Local Bending
2. Web Local Yielding
3. Web Crippling

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
4. Web Sidesway Buckling
5. Web Compression Buckling
6. Web Panel Zone Shear
7. Unframed Ends of Beams and Girders
8. Additional Stiffener Requirements for Concentrated Forces
9. Additional Doubler Plate Requirements for Concentrated Forces

K. DESIGN OF HSS AND BOX MEMBER CONNECTIONS
K1. Concentrated Forces on HSS
 1. Definitions of Parameters
 2. Limitations
 3. Concentrated Force Distributed Transversely
 4. Concentrated Force Distributed Longitudinally at the Center of the HSS Diameter or Width, and Acting Perpendicular to the HSS Axis
 5. Concentrated Force Distributed Longitudinally at the Center of the HSS Width, and Acting Parallel to the HSS Axis
 6. Concentrated Axial Force on the End of a Rectangular HSS with a Cap Plate
K2. HSS-to-HSS Truss Connections
 1. Definitions of Parameters
 2. Round HSS
 3. Rectangular HSS
K3. HSS-to-HSS Moment Connections

L. DESIGN FOR SERVICEABILITY
L2. Camber
L3. Deflections
L4. Drift
L5. Vibration
L6. Wind-Induced Motion
L7. Expansion and Contraction
L8. Connection Slip

M. FABRICATION, ERECTION AND QUALITY CONTROL
M1. Shop and Erection Drawings
M2. Fabrication
 1. Cambering, Curving and Straightening
 2. Thermal Cutting
 4. Welded Construction
 5. Bolted Construction
 10. Drain Holes
 11. Requirements for Galvanized Members
M3. Shop Painting
 1. General Requirements
 5. Surfaces Adjacent to Field Welds
M4. Erection

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2. Stability and Connections
4. Fit of Column Compression Joints and Base Plates
5. Field Welding
M5. Quality Control
5. Identification of Steel

APPENDIX 1. INELASTIC ANALYSIS AND DESIGN
1.1. General Provisions
1.2. Materials
1.3. Moment Redistribution
1.4. Local Buckling
1.5. Stability and Second-Order Effects
1.6. Columns and Other Compression Members
1.7. Beams and Other Flexural Members
1.8. Members Under Combined Forces
1.9. Connections

APPENDIX 2. DESIGN FOR PONDING
2.1 Simplified Design for Ponding
2.2 Improved Design for Ponding

APPENDIX 3. DESIGN FOR FATIGUE
3.2. Calculation of Maximum Stresses and Stress Ranges
3.3. Design Stress Range
3.4. Bolts and Threaded Parts
3.5. Special Fabrication and Erection Requirements

APPENDIX 4. STRUCTURAL DESIGN FOR FIRE CONDITIONS
4.1.1. Performance Objective
4.1.4. Load Combinations and Required Strength
4.2. Structural Design for Fire Conditions by Analysis
4.2.1. Design-Basis Fire
4.2.1.1. Localized Fire
4.2.1.2. Post-flashover Compartment Fires
4.2.1.3. Exterior Fires
4.2.1.4. Fire Duration
4.2.1.5. Active Fire Protection Systems
4.2.2. Temperatures in Structural Systems Under Fire Conditions
4.2.3. Material Strengths at Elevated Temperatures
4.2.4. Structural Design Requirements
4.2.4.1. General Structural Integrity
4.2.4.2. Strength Requirements and Deformation Limits
4.2.4.3. Methods of Analysis
4.2.4.3a. Advanced Methods of Analysis
4.2.4.3b. Simple Methods of Analysis
4.2.4.4. Design Strength

4.3. Design by Qualification Testing

APPENDIX 5 EVALUATION OF EXISTING STRUCTURES

5.1. General Provisions

5.2. Material Properties

1. Determination of Required Tests

2. Tensile Properties

3. Chemical Composition

4. Base Metal Notch Toughness

5. Weld Metal

6. Bolts and Rivets

5.3. Evaluation by Structural Analysis

2. Strength Evaluation

5.4. Evaluation by Load Tests

1. Determination of Load Rating by Testing

2. Serviceability Evaluation

5.5. Evaluation Report

APPENDIX 6. STABILITY BRACING FOR COLUMNS AND BEAMS

6.2. Columns

6.3. Beams

1. Lateral Bracing

2. Torsional Bracing

2a. Nodal Bracing

2b. Continuous Torsional Bracing

APPENDIX 7. ALTERNATE METHODS OF STABILITY ANALYSIS AND DESIGN

7.1. General Stability Requirements

7.2. Effective Length Method

1. Limits on Use

2. Calculation of Required Strengths

3. Calculation of Available Strengths

7.3. First-Order Analysis Method

1. Limits on Use

2. Calculation of Required Strengths

3. Calculation of Available Strengths

APPENDIX 8. SECOND-ORDER ANALYSIS BY AMPLIFIED FIRST-ORDER ELASTIC ANALYSIS

REFERENCES
Symbols

The section or table number in the right-hand column refers to where the symbol is first used.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>Cross-sectional area of column, (\text{in.}^2) ((\text{mm}^2))</td>
<td>J10.6</td>
</tr>
<tr>
<td>(\bar{A})</td>
<td>Total cross-sectional area of member, (\text{in.}^2) ((\text{mm}^2))</td>
<td>E7.2</td>
</tr>
<tr>
<td>(A_l)</td>
<td>Loaded area of concrete, (\text{in.}^2) ((\text{mm}^2))</td>
<td>I5.1</td>
</tr>
<tr>
<td>(A_{BM})</td>
<td>Cross-sectional area of the base metal, (\text{in.}^2) ((\text{mm}^2))</td>
<td>J2.4</td>
</tr>
<tr>
<td>(A_h)</td>
<td>Nominal unthreaded body area of bolt or threaded part, (\text{in.}^2) ((\text{mm}^2))</td>
<td>J3.6</td>
</tr>
<tr>
<td>(A_{bi})</td>
<td>Cross-sectional area of the overlapping branch, (\text{in.}^2) ((\text{mm}^2))</td>
<td>K2.3</td>
</tr>
<tr>
<td>(A_{bj})</td>
<td>Cross-sectional area of the overlapped branch, (\text{in.}^2) ((\text{mm}^2))</td>
<td>K2.3</td>
</tr>
<tr>
<td>(A_c)</td>
<td>Area of concrete, (\text{in.}^2) ((\text{mm}^2))</td>
<td>I2.1</td>
</tr>
<tr>
<td>(A_c)</td>
<td>Area of concrete slab within effective width, (\text{in.}^2) ((\text{mm}^2))</td>
<td>I3.2</td>
</tr>
<tr>
<td>(A_D)</td>
<td>Area of upset rod based on the major thread diameter, (\text{in.}^2) ((\text{mm}^2))</td>
<td>Table J3.2</td>
</tr>
<tr>
<td>(A_e)</td>
<td>Effective net area, (\text{in.}^2) ((\text{mm}^2))</td>
<td>D2</td>
</tr>
<tr>
<td>(A_e)</td>
<td>Summation of the effective areas of the cross section based on the reduced effective width, (b_n), (\text{in.}^2) ((\text{mm}^2))</td>
<td>E7.2</td>
</tr>
<tr>
<td>(A_{fc})</td>
<td>Area of compression flange</td>
<td>G3.1</td>
</tr>
<tr>
<td>(A_{fg})</td>
<td>Gross area of tension flange, (\text{in.}^2) ((\text{mm}^2))</td>
<td>F13.1</td>
</tr>
<tr>
<td>(A_{ft})</td>
<td>Net area of tension flange, (\text{in.}^2) ((\text{mm}^2))</td>
<td>F13.1</td>
</tr>
<tr>
<td>(A_g)</td>
<td>Gross area of member, (\text{in.}^2) ((\text{mm}^2))</td>
<td>B4.3</td>
</tr>
<tr>
<td>(A_g)</td>
<td>Gross area of section based on design wall thickness, (\text{in.}^2) ((\text{mm}^2))</td>
<td>G6</td>
</tr>
<tr>
<td>(A_g)</td>
<td>Gross area of composite member, (\text{in.}^2) ((\text{mm}^2))</td>
<td>I2.1</td>
</tr>
<tr>
<td>(A_g)</td>
<td>Gross section of connected material, (\text{in.}^2) ((\text{mm}^2))</td>
<td>J3.6</td>
</tr>
<tr>
<td>(A_{gv})</td>
<td>Gross area subject to shear, (\text{in.}^2) ((\text{mm}^2))</td>
<td>J4.2</td>
</tr>
<tr>
<td>(A_n)</td>
<td>Net area of member, (\text{in.}^2) ((\text{mm}^2))</td>
<td>B4.3</td>
</tr>
<tr>
<td>(A_n)</td>
<td>Effective net area of connected material, (\text{in.}^2) ((\text{mm}^2))</td>
<td>J3.6</td>
</tr>
<tr>
<td>(A_n)</td>
<td>Net area subject to tension, (\text{in.}^2) ((\text{mm}^2))</td>
<td>J4.3</td>
</tr>
<tr>
<td>(A_{nv})</td>
<td>Net area subject to shear, (\text{in.}^2) ((\text{mm}^2))</td>
<td>J4.2</td>
</tr>
<tr>
<td>(A_{pb})</td>
<td>Projected area in bearing, (\text{in.}^2) ((\text{mm}^2))</td>
<td>J7</td>
</tr>
<tr>
<td>(A_s)</td>
<td>Area of steel cross section, (\text{in.}^2) ((\text{mm}^2))</td>
<td>I2.1</td>
</tr>
<tr>
<td>(A_s)</td>
<td>Total bolt area included in all shear planes. With threads in the shear plane, (A_s) is taken as 0.80 times the nominal area of the bolts, (\text{in.}^2) ((\text{mm}^2))</td>
<td>J3.6</td>
</tr>
<tr>
<td>(A_{sc})</td>
<td>Cross-sectional area of stud connector, (\text{in.}^2) ((\text{mm}^2))</td>
<td>I7.2</td>
</tr>
<tr>
<td>(A_{sf})</td>
<td>Area on the shear failure path, (\text{in.}^2) ((\text{mm}^2))</td>
<td>D5.1</td>
</tr>
<tr>
<td>(A_{sr})</td>
<td>Area of continuous reinforcing bars, (\text{in.}^2) ((\text{mm}^2))</td>
<td>I2.1</td>
</tr>
<tr>
<td>(A_{sr})</td>
<td>Area of adequately developed longitudinal reinforcing bars</td>
<td>I2.1</td>
</tr>
</tbody>
</table>
steel within the effective width of the concrete slab,
in.² (mm²) ...I3.2

A_r Net area in tension, in.² (mm²) ...App. 3.4

A_w Area of web, the overall depth times the web
thickness, d_{tw} in.² (mm²) ..G2.1

A_{we} Effective area of weld, in.² (mm²)J2.4

A_{wei} Effective area of weld throat of any ith weld element
in.² (mm²) ..J2.4

A_1 Area of steel concentrically bearing on a concrete
support, in.² (mm²) ..J8

A_2 Maximum area of the portion of the supporting surface
that is geometrically similar to and concentric with
the loaded area, in.² (mm²) ..J8

B Overall width of rectangular HSS main member,
measured 90 degrees to the plane of the connection,
in. (mm) ...Table D3.1, K3.1

B Factor for lateral-torsional buckling in tees and double
angles ..F9.2

B_h Overall width of rectangular HSS branch member,
measured 90 degrees to the plane of the connection,
in. (mm) ...K3.1

B_{bi} Overall width of the overlapping branchK2.3

B_{bj} Overall width of the overlapped branchK2.3

B_p Width of plate, measure 90 degrees to the plane of the
connection, in. (mm) ..K1.1

B_1, B_2 Factors used in determining M_u for combined bending
and axial forces when first-order analysis is employedApp.8.2

C HSS torsional constant ..H3.1

C_1 Coefficient for calculation of effective rigidity of an
encased composite compression memberI2.1b

C_3 Coefficient for calculation of effective rigidity of a
filled composite compression memberI2.2b

C_b Lateral-torsional buckling modification factor for
nonuniform moment diagrams when both ends of the
unsupported segment are braced ..F1

C_d Coefficient relating relative brace stiffness and
curvature ...App. 6.3.1

C_f Constant based on stress category, given in Table A-
3.1 ..App. 3.3

C_{in} Constant used to calculate direct bond strength
dependent on the location of a filled composite
member with respect to the point of load transferI5.3c

C_m Coefficient assuming no lateral translation of the
frame ..App. 8.2.1

C_p Ponding flexibility coefficient for primary member in
a flat roof ...App. 2.1

C_r Coefficient for web sidesway bucklingJ10.4

C_s Ponding flexibility coefficient for secondary member
in a flat roof ...App. 2.1

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{nBM}</td>
<td>Nominal stress of the base metal, ksi (MPa)</td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>F_{nt}</td>
<td>Nominal tensile stress from Table J3.2, ksi (MPa)</td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td>F'_{nt}</td>
<td>Nominal tensile stress modified to include the effects of shear stress, ksi (MPa)</td>
<td></td>
<td>3.7</td>
</tr>
<tr>
<td>F_{nv}</td>
<td>Nominal shear stress from Table J3.2, ksi (MPa)</td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>F_{nw}</td>
<td>Nominal stress of the weld metal, ksi (MPa)</td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>F_{nwi}</td>
<td>ith weld element, ksi (MPa)</td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>F_{nvi}</td>
<td>ith weld element, ksi (MPa)</td>
<td></td>
<td>2.4</td>
</tr>
<tr>
<td>F_{SR}</td>
<td>Service stress range, ksi (MPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{TH}</td>
<td>Threshold fatigue stress range, maximum stress range for indefinite design life from Table A-3.1, ksi (MPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_u</td>
<td>Specified minimum tensile strength of the type of steel being used, ksi (MPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{um}</td>
<td>Specified minimum tensile strength of the type of steel being used at elevated temperature, ksi (MPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_w</td>
<td>Nominal strength of the weld metal per unit area (Chapter J) with no increase in strength due to directionality of load, ksi (MPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_y</td>
<td>Specified minimum yield stress of the type of steel being used, ksi (MPa). As used in this Specification, “yield stress” denotes either the specified minimum yield point (for those steels that have a yield point) or specified yield strength (for those steels that do not have a yield point).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{yb}</td>
<td>Specified minimum yield stress of HSS branch member material, ksi (MPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{ybi}</td>
<td>Specified minimum yield stress of the overlapping branch material, ksi (MPa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F_{ybj}</td>
<td>Specified minimum yield stress of the overlapped branch material, ksi (MPa)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specification for Structural Steel Buildings, Public Review Draft dated March 1, 2009

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_{yw}</td>
<td>Specified minimum yield stress of the web, ksi (MPa)</td>
<td>J10.2</td>
</tr>
<tr>
<td>F_{ym}</td>
<td>Specified minimum yield stress of the type of steel being used at elevated temperature, ksi (MPa)</td>
<td>App. 4.2</td>
</tr>
<tr>
<td>F_{yp}</td>
<td>Specified minimum yield stress of plate, ksi (MPa)</td>
<td>K1.1</td>
</tr>
<tr>
<td>F_{y}</td>
<td>Specified minimum yield stress of reinforcing bars, ksi (MPa)</td>
<td>I2.1</td>
</tr>
<tr>
<td>F_{ysr}</td>
<td>Specified minimum yield stress of the stiffener material, ksi (MPa)</td>
<td>G3.3</td>
</tr>
<tr>
<td>G</td>
<td>Shear modulus of elasticity of steel</td>
<td>(77 200 MPa) E4</td>
</tr>
<tr>
<td>ΣH</td>
<td>Story shear produced by the lateral forces used to compute ΔH, kips (N)</td>
<td>App. 8.2.2</td>
</tr>
<tr>
<td>H</td>
<td>Overall height of rectangular HSS main member, measured in the plane of the connection, in. (mm)</td>
<td>Table D3.1, K2.1</td>
</tr>
<tr>
<td>H_b</td>
<td>Overall height of rectangular HSS branch member, measured in the plane of the connection, in. (mm)</td>
<td>K2.1</td>
</tr>
<tr>
<td>H_{bi}</td>
<td>Overall depth of the overlapping branch</td>
<td>K2.3</td>
</tr>
<tr>
<td>I</td>
<td>Moment of inertia in the plane of bending, in.4 (mm4)</td>
<td>App. 8.2.1</td>
</tr>
<tr>
<td>I_c</td>
<td>Moment of inertia of the concrete section, in.4 (mm4)</td>
<td>I2.1</td>
</tr>
<tr>
<td>I_d</td>
<td>Moment of inertia of the steel deck supported on secondary members, in.4 (mm4)</td>
<td>App. 2.1</td>
</tr>
<tr>
<td>I_p</td>
<td>Moment of inertia of primary members, in.4 (mm4)</td>
<td>App. 2.1</td>
</tr>
<tr>
<td>I_s</td>
<td>Moment of inertia of secondary members, in.4 (mm4)</td>
<td>App. 2.1</td>
</tr>
<tr>
<td>I_y</td>
<td>Moment of inertia of steel shape, in.4 (mm4)</td>
<td>I2.1</td>
</tr>
<tr>
<td>I_{yr}</td>
<td>Moment of inertia of reinforcing bars, in.4 (mm4)</td>
<td>I2.1</td>
</tr>
<tr>
<td>I_{x}, I_y</td>
<td>Moment of inertia about the principal axes, in.4 (mm4)</td>
<td>E4</td>
</tr>
<tr>
<td>I_y</td>
<td>Out-of-plane moment of inertia, in.4 (mm4)</td>
<td>App. 6.2</td>
</tr>
<tr>
<td>I_z</td>
<td>Minor principal axis moment of inertia, in.4 (mm4)</td>
<td>F10.2</td>
</tr>
<tr>
<td>I_{yz}</td>
<td>Moment of inertia of the compression flange about y-axis, in.4 (mm4)</td>
<td>F4.2</td>
</tr>
<tr>
<td>J</td>
<td>Torsional constant, in.4 (mm4)</td>
<td>E4</td>
</tr>
<tr>
<td>K</td>
<td>Effective length factor</td>
<td>C3</td>
</tr>
<tr>
<td>K_x</td>
<td>Effective length factor for flexural buckling about x-axis</td>
<td>E4</td>
</tr>
<tr>
<td>K_y</td>
<td>Effective length factor for flexural buckling about y-axis</td>
<td>E4</td>
</tr>
<tr>
<td>K_z</td>
<td>Effective length factor for torsional buckling</td>
<td>E4</td>
</tr>
<tr>
<td>K_1</td>
<td>Effective length factor in the plane of bending, calculated based on the assumption of no lateral translation set equal to 1.0 unless analysis indicates that a smaller value may be used</td>
<td>App. 8.2.1</td>
</tr>
<tr>
<td>L</td>
<td>Story height, in. (mm)</td>
<td>App. 7.3.2</td>
</tr>
<tr>
<td>L</td>
<td>Length of member, in. (mm)</td>
<td>H3</td>
</tr>
<tr>
<td>L</td>
<td>Nominal occupancy live load</td>
<td>App. 4.1.4</td>
</tr>
<tr>
<td>L</td>
<td>Laterally unbraced length of a member, in. (mm)</td>
<td>E2</td>
</tr>
<tr>
<td>L</td>
<td>Span length, in. (mm)</td>
<td>App. 6.3.2</td>
</tr>
<tr>
<td>L</td>
<td>Length of member between work points at truss chord centerlines, in. (mm)</td>
<td>E5</td>
</tr>
</tbody>
</table>
\(L_b \) Length between points that are either braced against lateral displacement of compression flange or braced against twist of the cross section, in. (mm)F2

\(L_b \) Distance between braces, in. (mm)App. 6.2

\(L_p \) Limiting laterally unbraced length for the limit state of yielding in. (mm) ..F2.2

\(L_p \) Column spacing in direction of girder, ft (m)App. 2

\(L_{pd} \) Limiting laterally unbraced length for plastic analysis, in. (mm) ..App. 1.7

\(L_r \) Limiting laterally unbraced length for the limit state of inelastic lateral-torsional buckling, in. (mm)F2.2

\(L_s \) Column spacing perpendicular to direction of girder, ft (m) ..App. 2.1

\(L_v \) Distance from maximum to zero shear force, in. (mm)G6

\(M_a \) Absolute value of moment at quarter point of the unbraced segment, kip-in. (N-mm)F1

\(M_a \) Required flexural strength using ASD load combinations, kip-in. (N-mm) ...J10.4

\(M_B \) Absolute value of moment at centerline of the unbraced segment, kip-in. (N-mm) ...F1

\(M_C \) Absolute value of moment at three-quarter point of the unbraced segment, kip-in. (N-mm)F1

\(M_{c(x,y)} \) Available flexural strength determined in accordance with Chapter F, kip-in. (N-mm)H1.1

\(M_{cx} \) Available lateral-torsional strength for strong axis flexure determined in accordance with Chapter F, kip-in. (N-mm) ..H1.3

\(M_e \) Elastic lateral-torsional buckling moment, kip-in. (N-mm) ..F10.2

\(M_f \) First-order moment under LRFD or ASD load combinations caused by lateral translation of the frame only, kip-in. (N-mm) ..App. 8.2

\(M_{max} \) Absolute value of maximum moment in the unbraced segment, kip-in. (N-mm) ...F1

\(M_{mid} \) Major-axis bending moment at the middle of the unbraced segment, kip-in. (N-mm) ...App. 1.2

\(M_n \) Nominal flexural strength, kip-in. (N-mm)F1

\(M_{st} \) First-order moment using LRFD or ASD load combinations assuming there is no lateral translation of the frame, kip-in. (N-mm) ...App. 8.2

\(M_p \) Plastic bending moment, kip-in. (N-mm)Table B4.1

\(M_r \) Required second-order flexural strength under LRFD or ASD load combinations, kip-in. (N-mm)App. 8.2

\(M_r \) Required flexural strength using LRFD or ASD load combinations, kip-in. (N-mm) ..H1.1

\(M_r \) Required flexural strength in chord using LRFD or ASD load combinations, kip-in. (N-mm)K2.2

\(M_{rb} \) Required bracing moment using LRFD or ASD load combinations, kip-in. (N-mm) ...App. 6.3.2

\(M_{rip} \) Required in-plane flexural strength in branch using

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
FOR COMMITTEE USE ONLY

Specification for Structural Steel Buildings,
Public Review Draft dated March 1, 2009

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

combinations, kips (N) ..J10.6

P_r Required strength in branch using LRFD or ASD load

$kips (N)$...K3.2d

P_r Required axial strength in chord, kips (N)K2.2

P_{rb} Required brace strength using LRFD or ASD load

$kips (N)$...App. 6.2

P_u Required axial strength in compression, kips (N)App. 1.4

P_y Axial yield strength, kips (N)C2.3

Q Net reduction factor accounting for all slender
compression elements ..E7

Q_a Reduction factor for slender stiffened compression

elements ...E7.2

Q_{ct} Available tensile strength, kips (N)I7.3c

Q_{cv} Available shear strength, kips (N)I7.3c

Q_f Chord-stress interaction parameterK2.2

Q_n Nominal strength of one stud shear connector, kips (N)....I3.2

Q_{mt} Nominal tensile strength of one stud anchorI7.3b

Q_{nv} Nominal shear strength of one stud anchorI7.3a

Q_{rt} Required tensile strength, kips (N)I7.3c

Q_{rv} Required shear strength, kips (N)I7.3c

Q_s Reduction factor for slender unstiffened compression

elements ...E7.1

R Nominal load due to rainwater or snow, exclusive of

the ponding contribution, ksi (MPa)App. 2.2

R_a Seismic response modification coefficientA1.1

R_{s} Required strength using ASD load combinationsB3.4

R_{Fil} Reduction factor for joints using a pair of transverse

fillet welds only ..App. 3.3

R_g Coefficient to account for group effectI7.2

R_m Factor in Equation A-8-2-6 dependent on type of

system ..App. 8.2.2

R_n Nominal strength, specified in Chapters B through KB3.3

R_{n} Nominal slip resistance, kips (N)J3.8

R_{ml} Total nominal strength of longitudinally loaded fillet

welds, as determined in accordance with Table J2.5J2.4

R_{mt} Total nominal strength of transversely loaded fillet

welds, as determined in accordance with Table J2.5J2.4

without the alternate in Section J2.4 (a)J2.4

R_{nx} Horizontal component of the nominal strength of a

weld group, kips (N) ..J2.4

R_{ny} Vertical component of the nominal strength of a weld

group, kips (N) ...J2.4

R_p Position effect factor for shear studsI7.2

R_{pc} Web plastification factor ...F4.1

R_{pg} Bending strength reduction factorF5.2

R_{PJP} Reduction factor for reinforced or nonreinforced

transverse partial-joint-penetration (PJP) groove welds

...App. 3.3

R_{pt} Web plastification factor corresponding to the tension

flange yielding limit state ..F4.4
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_u</td>
<td>Required strength using LRFD load combinationsB3.3</td>
</tr>
<tr>
<td>S</td>
<td>Elastic section modulus of round HSS, in.3 (mm3)F8.2</td>
</tr>
<tr>
<td>S</td>
<td>Lowest elastic section modulus relative to the axis of bending, in.3 (mm3)F12</td>
</tr>
<tr>
<td>S</td>
<td>Spacing of secondary members, ft (m)App. 2.1</td>
</tr>
<tr>
<td>S</td>
<td>Nominal snow load ..App. 4.1.4</td>
</tr>
<tr>
<td>S_c</td>
<td>Elastic section modulus to the toe in compression relative to the axis of bending, in.3 (mm3)F10.3</td>
</tr>
<tr>
<td>S_e</td>
<td>Effective section modulus about major axis, in.3 (mm3)F7.2</td>
</tr>
<tr>
<td>S_{ip}</td>
<td>Weld effective elastic section modulus per unit length for in-plane bending (Table K4.1), in.2 (mm2)K4</td>
</tr>
<tr>
<td>S_{op}</td>
<td>Weld effective elastic section modulus per unit length for out-of-plane bending (Table K4.1), in.2 (mm2)K4</td>
</tr>
<tr>
<td>S_{xt}, S_{xc}</td>
<td>Elastic section modulus referred to tension and compression flanges, respectively, in.3 (mm3)Table B4.1</td>
</tr>
<tr>
<td>S_x, S_y</td>
<td>Elastic section modulus taken about the principal axes, in.3 (mm3)F2.2, F6</td>
</tr>
<tr>
<td>T</td>
<td>Nominal forces and deformations due to the design-basis fire defined in Section 4.2.1App. 4.1.4</td>
</tr>
<tr>
<td>T_a</td>
<td>Required tension force using ASD load combinations, kips (kN)J3.9</td>
</tr>
<tr>
<td>T_b</td>
<td>Minimum fastener tension given in Table J3.1 or J3.1M, kips (kN)..J3.8</td>
</tr>
<tr>
<td>T_c</td>
<td>Available torsional strength, kip-in. (N-mm)H3.2</td>
</tr>
<tr>
<td>T_n</td>
<td>Nominal torsional strength, kip-in. (N-mm)H3.1</td>
</tr>
<tr>
<td>Tr</td>
<td>Required torsional strength using LRFD or ASD load combinations, kip-in. (N-mm)H3.2</td>
</tr>
<tr>
<td>Tu</td>
<td>Required tension force using LRFD load combinations, kips (kN)J3.9</td>
</tr>
<tr>
<td>U</td>
<td>Shear lag factor ..D3.3</td>
</tr>
<tr>
<td>U</td>
<td>Utilization ratio ...K2.2</td>
</tr>
<tr>
<td>U_{bs}</td>
<td>Reduction coefficient, used in calculating block shear rupture strengthJ4.3</td>
</tr>
<tr>
<td>U_p</td>
<td>Stress index for primary membersApp. 2.2</td>
</tr>
<tr>
<td>U_s</td>
<td>Stress index for secondary membersApp. 2.2</td>
</tr>
<tr>
<td>V_{r}</td>
<td>Required shear force transferred by shear connectors using LRFD or ASD load combinations, kips (N)I2.2</td>
</tr>
<tr>
<td>V_r</td>
<td>Required shear strength at the location of the stiffener using LRFD or ASD load combinations, kips (N)G3.3</td>
</tr>
<tr>
<td>V_{r}</td>
<td>Required shear strength using LRFD or ASD load combinations, kips (N)H3.2</td>
</tr>
<tr>
<td>V_{r}</td>
<td>Required shear strength using LRFD or ASD load combinations, kips (N)H3.2</td>
</tr>
<tr>
<td>V_{t}</td>
<td>Hole reduction coefficient, kips (N)C2.2</td>
</tr>
<tr>
<td>Z</td>
<td>Plastic section modulus about the axis of bending, in.3 (mm3) ..F7.1</td>
</tr>
<tr>
<td>Z_b</td>
<td>Plastic section modulus of branch about the axis of</td>
</tr>
</tbody>
</table>
bending, in.\(^3\) (mm\(^3\)) .. K3.3
\(Z_{x,y}\) Plastic section modulus about the principal axes, in.\(^3\) (mm\(^3\)) .. F2, F6.1
\(\alpha\) Clear distance between transverse stiffeners, in. (mm)........ F13.2
\(\alpha\) Distance between connectors in a built-up member, in. (mm) .. E6.1
\(\alpha\) Shortest distance from edge of pin hole to edge of member measured parallel to direction of force, in. (mm) .. D5.1
\(\alpha\) Half the length of the nonwelded root face in the direction of the thickness of the tension-loaded plate, in. (mm) App. 3.3
\(\alpha\) Weld length along both edges of the cover plate termination to the beam or girder .. F13.3
\(\alpha_w\) Ratio of two times the web area in compression due to the area of the compression flange components F4.2
\(b\) Outside width of leg in compression, in. (mm).................. F10.3
\(b\) For flanges of I-shaped members, half the full-flange width, \(b_x\); for flanges of channels, the full nominal dimension of the flange, in. (mm) ... F6.2
\(b\) Full width of longest angle leg, in. (mm) E7.1
\(b\) Width of unstiffened compression element; for flanges of I-shaped members and tees, the width \(b\) is half the full-flange width, \(b_x\); for legs of angles and flanges of channels and zees, the width \(b\) is the full nominal dimension; for plates, the width \(b\) is the distance from the free edge to the first row of fasteners or line of welds, or the distance between adjacent lines of fasteners or lines of welds; for rectangular HSS, the width \(b\) is the clear distance between the webs less the inside corner radius on each side, in. (mm) B4.1, B4.2
\(b\) Width of the angle leg resisting the shear force, in. (mm) .. G4
\(b_{cf}\) Width of column flange, in. (mm)................................. J10.6
\(b_e\) Reduced effective width, in. (mm)................................. E7.2
\(b_e\) Effective edge distance; the distance from the edge of the hole to the edge of the part measured in the direction normal to the applied force, in. (mm).......................... D5.1
\(b_{eov}\) Effective width of the branch face welded to the overlapped brace ... K2.3
\(b_f\) Width of flange, in. (mm) ... B4.1
\(b_{fc}\) Width of compression flange, in. (mm) F4.2
\(b_{ft}\) Width of tension flange, in. (mm).......................... G3.1
\(b_l\) Length of longer leg of angle, in. (mm).......................... E5
\(b_s\) Length of shorter leg of angle, in. (mm).................. E5
\(b_{s}\) Stiffener width for one-sided stiffeners, in. (mm)......... App. 6.3.2
\(c\) 2.2
\(d\) Nominal fastener diameter, in. (mm)......................... J3.3
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>d</td>
<td>Nominal bolt diameter, in. (mm)</td>
<td>J3.10</td>
</tr>
<tr>
<td>d</td>
<td>Full nominal depth of the section, in. (mm)</td>
<td>B4.1</td>
</tr>
<tr>
<td>d</td>
<td>Full depth of tee, in. (mm)</td>
<td>E7.1</td>
</tr>
<tr>
<td>d</td>
<td>Depth of rectangular bar, in. (mm)</td>
<td>F11.2</td>
</tr>
<tr>
<td>d</td>
<td>Diameter, in. (mm)</td>
<td>J7</td>
</tr>
<tr>
<td>d</td>
<td>Diameter of pin, in. (mm)</td>
<td>D5.1</td>
</tr>
<tr>
<td>d</td>
<td>Diameter of roller, in. (mm)</td>
<td>J7</td>
</tr>
<tr>
<td>d_b</td>
<td>Depth of beam, in. (mm)</td>
<td>J10.6</td>
</tr>
<tr>
<td>d_b</td>
<td>Nominal diameter (body or shank diameter), in. (mm)</td>
<td>J10.6</td>
</tr>
<tr>
<td>d_c</td>
<td>Depth of column, in. (mm)</td>
<td>J10.6</td>
</tr>
<tr>
<td>e</td>
<td>Eccentricity in a truss connection, positive being away from the branches, in. (mm)</td>
<td>K2.1</td>
</tr>
<tr>
<td>e_{mid-ht}</td>
<td>Distance from the edge of stud shank to the steel deck web, measured at mid-height of the deck rib, and in the load bearing direction of the stud (in other words, in the direction of maximum moment for a simply supported beam), in. (mm)</td>
<td>I7.2</td>
</tr>
<tr>
<td>f'_c</td>
<td>Specified minimum compressive strength of concrete, ksi (MPa)</td>
<td>I1.2</td>
</tr>
<tr>
<td>f'_{cm}</td>
<td>Specified minimum compressive strength of concrete at elevated temperatures, ksi (MPa)</td>
<td>App. 4.2.3.2</td>
</tr>
<tr>
<td>f_o</td>
<td>Stress due to $D + R$ (the nominal dead load + the nominal load due to rainwater or snow exclusive of the ponding contribution), ksi (MPa)</td>
<td>App. 2.2</td>
</tr>
<tr>
<td>f_{ra}</td>
<td>Required axial stress at the point of consideration using LRFD or ASD load combinations, ksi (MPa)</td>
<td>H2</td>
</tr>
<tr>
<td>$f_{rb(w,z)}$</td>
<td>Required flexural stress at the point of consideration (major axis, minor axis) using LRFD or ASD load combinations, ksi (MPa)</td>
<td>H2</td>
</tr>
<tr>
<td>f_{rv}</td>
<td>Required shear stress using LRFD or ASD load combinations, ksi (MPa)</td>
<td>J3.7</td>
</tr>
<tr>
<td>g</td>
<td>Transverse center-to-center spacing (gage) between fastener gage lines, in. (mm)</td>
<td>B4.3</td>
</tr>
<tr>
<td>g</td>
<td>Gap between toes of branch members in a gapped K-connection, neglecting the welds, in. (mm)</td>
<td>K2.1</td>
</tr>
<tr>
<td>h</td>
<td>Clear distance between flanges less the fillet or corner radius at each flange for rolled shapes; for built-up sections, the distance between adjacent lines of fasteners or the clear distance between flanges when welds are used; for tees, the overall depth; for rectangular HSS, the clear distance between the flanges less the inside corner radius on each side, in. (mm)</td>
<td>B4.2</td>
</tr>
<tr>
<td>h_c</td>
<td>Twice the distance from the centroid to the following: the inside face of the compression flange less the fillet or corner radius, for rolled shapes; the nearest line of fasteners at the compression flange or the inside faces of the compression flange when welds are used, for built-up sections, in. (mm)</td>
<td>B4.2</td>
</tr>
<tr>
<td>h_f</td>
<td>Factor for filler</td>
<td>J3.8</td>
</tr>
<tr>
<td>h_o</td>
<td>Distance between flange centroids, in. (mm)</td>
<td>E4</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>h_p</td>
<td>Twice the distance from the plastic neutral axis to the nearest line of fasteners at the compression flange or the inside face of the compression flange when welds are used, in. (mm)</td>
<td>B4.2</td>
</tr>
<tr>
<td>j</td>
<td>Factor defined by Equation G2-6 for minimum moment of inertia for a transverse stiffener</td>
<td>G2.2</td>
</tr>
<tr>
<td>k</td>
<td>Distance from outer face of flange to the web toe of fillet, in. (mm)</td>
<td>J10.2</td>
</tr>
<tr>
<td>k_c</td>
<td>Coefficient for slender unstiffened elements, in. (mm)</td>
<td>Table B4.1</td>
</tr>
<tr>
<td>k_{sc}</td>
<td>Slip-critical combined tension and shear coefficient</td>
<td>J3.9</td>
</tr>
<tr>
<td>k_v</td>
<td>Web plate shear buckling coefficient</td>
<td>G2.1</td>
</tr>
<tr>
<td>l</td>
<td>Largest laterally unbraced length along either flange at the point of load, in. (mm)</td>
<td>J10.4</td>
</tr>
<tr>
<td>l_1</td>
<td>Length of bearing, in. (mm)</td>
<td>J7</td>
</tr>
<tr>
<td>l_2</td>
<td>Length of connection in the direction of loading, in. (mm)</td>
<td>Table D3.1</td>
</tr>
<tr>
<td>l_b</td>
<td>Length of bearing (not less than k for end beam reactions), in. (mm)</td>
<td>J10.2</td>
</tr>
<tr>
<td>l_b</td>
<td>Bearing length of the load, measured parallel to the axis of the HSS member, (or measured across the width of the HSS in the case of the loaded cap plates), in. (mm)</td>
<td>K1.1</td>
</tr>
<tr>
<td>l_c</td>
<td>Length of channel shear connector, in. (mm)</td>
<td>J7.2</td>
</tr>
<tr>
<td>l_c</td>
<td>Clear distance, in the direction of the force, between the edge of the hole and the edge of the adjacent hole or edge of the material, in. (mm)</td>
<td>J3.10</td>
</tr>
<tr>
<td>l_e</td>
<td>Total effective weld length of groove and fillet welds to rectangular HSS, for weld strength calculations, in. (mm)</td>
<td>K4</td>
</tr>
<tr>
<td>l_{ov}</td>
<td>Overlap length measured along the connecting face of the chord beneath the two branches</td>
<td>K2.1</td>
</tr>
<tr>
<td>l_p</td>
<td>Projected length of the overlapping branch on the chord</td>
<td>K2.1</td>
</tr>
<tr>
<td>n</td>
<td>Number of nodal braced points within the span</td>
<td>App. 6.3</td>
</tr>
<tr>
<td>n</td>
<td>Threads per inch (per mm)</td>
<td>App. 3.4</td>
</tr>
<tr>
<td>n_b</td>
<td>Number of bolts carrying the applied tension</td>
<td>J3.9</td>
</tr>
<tr>
<td>n_s</td>
<td>Number of slip planes required for the connection to slip</td>
<td>J3.8</td>
</tr>
<tr>
<td>n_{SR}</td>
<td>Number of stress range fluctuations in design life</td>
<td>App. 3.3</td>
</tr>
<tr>
<td>p</td>
<td>Pitch, in. per thread (mm per thread)</td>
<td>App. 3.4</td>
</tr>
<tr>
<td>p_i</td>
<td>Ratio of element i deformation to its deformation at maximum stress</td>
<td>J2.4</td>
</tr>
<tr>
<td>r</td>
<td>Radius of gyration, in. (mm)</td>
<td>E2</td>
</tr>
<tr>
<td>r_{crit}</td>
<td>Distance from instantaneous center of rotation to weld element with minimum $\Delta u/r_i$ ratio, in. (mm)</td>
<td>J2.4</td>
</tr>
<tr>
<td>r_i</td>
<td>Minimum radius of gyration of individual component in a built-up member, in. (mm)</td>
<td>E6.1</td>
</tr>
<tr>
<td>r_i</td>
<td>Distance from instantaneous center of rotation to i^{th} weld element, in. (mm)</td>
<td>J2.4</td>
</tr>
<tr>
<td>r_o</td>
<td>Polar radius of gyration about the shear center, in.</td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>r_f</td>
<td>Radius of gyration of the flange components in flexural compression plus one-third of the web area in compression due to application of major axis bending moment alone</td>
<td></td>
</tr>
<tr>
<td>r_{st}</td>
<td>Effective radius of gyration used in the determination of L_r, the lateral-torsional buckling limit state for major axis bending of doubly-symmetric compact I-shaped members and channels</td>
<td></td>
</tr>
<tr>
<td>r_x</td>
<td>Radius of gyration about the minor principal axis, in. (mm)</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Longitudinal center-to-center spacing (pitch) of any two consecutive holes, in. (mm)</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>Thickness of element, in. (mm)</td>
<td></td>
</tr>
<tr>
<td>t_f</td>
<td>Thickness of the loaded flange, in. (mm)</td>
<td></td>
</tr>
<tr>
<td>t_p</td>
<td>Thickness of plate, in. (mm)</td>
<td></td>
</tr>
<tr>
<td>t_{cf}</td>
<td>Thickness of compression flange, in. (mm)</td>
<td></td>
</tr>
<tr>
<td>t_{pl}</td>
<td>Thickness of the tension loaded plate, in. (mm)</td>
<td></td>
</tr>
<tr>
<td>t_{st}</td>
<td>Thickness of web stiffener, in. (mm)</td>
<td></td>
</tr>
<tr>
<td>t_{ei}</td>
<td>Thickness of the overlapping branch, in. (mm)</td>
<td></td>
</tr>
<tr>
<td>t_{oj}</td>
<td>Thickness of the overlapped branch, in. (mm)</td>
<td></td>
</tr>
<tr>
<td>t_{of}</td>
<td>Thickness of the column flange, in. (mm)</td>
<td></td>
</tr>
<tr>
<td>t_{fc}</td>
<td>Thickness of compression flange, in. (mm)</td>
<td></td>
</tr>
<tr>
<td>t_{w}</td>
<td>Thickness of web, in. (mm)</td>
<td></td>
</tr>
<tr>
<td>t_{cf}</td>
<td>Thickness of compression flange, in. (mm)</td>
<td></td>
</tr>
<tr>
<td>t_{wc}</td>
<td>Thickness of web, in. (mm)</td>
<td></td>
</tr>
<tr>
<td>t_{we}</td>
<td>Web thickness, in. (mm)</td>
<td></td>
</tr>
<tr>
<td>t_{wc}</td>
<td>Thickness of column web, in. (mm)</td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>Size of weld leg, in. (mm)</td>
<td></td>
</tr>
<tr>
<td>w</td>
<td>Leg size of the reinforcing or contouring fillet, if any,</td>
<td></td>
</tr>
</tbody>
</table>
in the direction of the thickness of the tension-loaded
plate, in. (mm) ...App. 3.3

w_c Weight of concrete per unit volume ($90 \leq w_c \leq 155$ lbs / ft3
or $1500 \leq w_c \leq 2500$ kg/m3)J2.1

w_r Average width of concrete rib or haunch, in. (mm)J3.2

x Subscript relating symbol to strong axis bendingH1.1

x_i x component of r_i ..J2.4

y_i y component of r_i ..J2.4

x_o, y_o Coordinates of the shear center with respect to the
centroid, in. (mm) ..E4

x Connection eccentricity, in. (mm) ..Table D3.1

y Subscript relating symbol to weak axis bendingH1.1

z Subscript relating symbol to minor principal axis

b Reduction factor given by Equation J2-1J2.2

β Width ratio; the ratio of branch diameter to chord
diameter for round HSS; the ratio of overall branch
width to chord width for rectangular HSSK2.1

β_T Brace stiffness requirement excluding web distortion,
kip-in./radian (N-mm/radian) ...App. 6.3.2

β_{br} Required brace stiffness ..App. 6.2.1

β_{eff} Effective width ratio; the sum of the perimeters of the
two branch members in a K-connection divided by
eight times the chord width ..K2.1

β_{eop} Effective outside punching parameterK2.3

β_{sec} Web distortional stiffness, including the effect of web
transverse stiffeners, if any, kip-in./radian (N-
mm/radian) ...App. 6.3.2

β_{Tb} Required stiffness for nodal bracingApp. 6.3.2a

β_w Section property for unequal leg angles, positive for
short legs in compression and negative for long legs
in compression ...F10.2

Δ First-order interstory drift due to the LRFD or ASD
load combinations, in. (mm) ..App. 7.3.2

Δ_H First-order interstory drift due to lateral forces, in.
(mm) ...App. 8.2.2

Δ_i Deformation of weld elements at intermediate stress
levels, linearly proportioned to the critical deforma-
tion based on distance from the instantaneous center
of rotation, r, in. (mm) ...J2.4

Δ_{mi} Deformation of weld element at maximum stress, in.
(mm) ...J2.4

Δ_{ui} Deformation of weld element at ultimate stress
(rupture), usually in element furthest from instantaneous center
of rotation, in. (mm) ...J2.4

γ Chord slenderness ratio; the ratio of one-half the
diameter to the wall thickness for round HSS; the
ratio of one-half the width to wall thickness for
rectangular HSS ..K2.1
\begin{itemize}
\item ζ Gap ratio; the ratio of the gap between the branches of a gapped K-connection to the width of the chord for rectangular HSS.
\item η Load length parameter, applicable only to rectangular HSS; the ratio of the length of contact of the branch with the chord in the plane of the connection to the chord width.
\item λ Slenderness parameter.
\item λ_p Limiting slenderness parameter for compact element.
\item λ_{pd} Limiting slenderness parameter for plastic design.
\item λ_{pf} Limiting slenderness parameter for compact flange.
\item λ_{pw} Limiting slenderness parameter for compact web.
\item λ_r Limiting slenderness parameter for noncompact element.
\item λ_{rf} Limiting slenderness parameter for noncompact flange.
\item λ_{rw} Limiting slenderness parameter for noncompact web.
\item μ Mean slip coefficient for class A or B surfaces, as applicable, or as established by tests.
\item ϕ Resistance factor, specified in Chapters B through K.
\item ϕ_B Resistance factor for bearing on concrete.
\item ϕ_b Resistance factor for flexure.
\item ϕ_c Resistance factor for compression.
\item ϕ_{cA} Resistance factor for axially loaded composite columns.
\item ϕ_s Resistance factor for stud anchor in tension.
\item ϕ_{sf} Resistance factor for shear on the failure path.
\item ϕ_T Resistance factor for torsion.
\item ϕ_v Resistance factor for shear.
\item ψ Resistance factor for stud anchor in shear.
\item Ω Safety factor, specified in Chapters B through K.
\item Ω_B Safety factor for bearing on concrete.
\item Ω_b Safety factor for flexure.
\item Ω_c Safety factor for compression.
\item Ω_{cA} Safety factor for axially loaded composite columns.
\item Ω_s Safety factor for stud anchor in tension.
\item Ω_{sf} Safety factor for shear on the failure path.
\item Ω_T Safety factor for torsion.
\item Ω_v Safety factor for shear.
\item ρ_{sr} Minimum reinforcement ratio for longitudinal reinforcing.
\item θ Angle of loading measured from the weld longitudinal axis, degrees.
\item θ_i Angle of loading measured from the longitudinal axis of the i^{th} weld element, degrees.
\item ϵ_{cu} Strain corresponding to compressive strength, f_{cu}.
\end{itemize}
τ_p Parameter for reduced flexural stiffness using the direct analysis method ...C2.3
GLOSSARY

Terms defined in this Glossary are italicized in the Glossary and where they first appear within a section or long paragraph throughout the Specification.

Notes:
(1) Terms designated with † are common AISI-AISC terms that are coordinated between the two standards development organizations.
(2) Terms designated with * are usually qualified by the type of load effect, for example, nominal tensile strength, available compressive strength, design flexural strength.
(3) Terms designated with ** are usually qualified by the type of component, for example, web local buckling, flange local bending.

Allowable strength†. Nominal strength divided by the safety factor, $\frac{R_n}{\Omega}$.

Allowable stress. Allowable strength divided by the appropriate section property, such as section modulus or cross-section area.

Amplification factor. Multiplier of the results of first-order analysis to reflect second-order effects.

Applicable building code†. Building code under which the structure is designed.

ASD (Allowable Strength Design)†. Method of proportioning structural components such that the allowable strength equals or exceeds the required strength of the component under the action of the ASD load combinations.

ASD load combination†. Load combination in the applicable building code intended for allowable strength design (allowable stress design).

Authority having jurisdiction. Organization, political subdivision, office or individual charged with the responsibility of administering and enforcing the provisions of the applicable building code.

Available strength*. Design strength or allowable strength, as appropriate.

Available stress*. Design stress or allowable stress, as appropriate.

Average rib width. In a formed steel deck, average width of the rib of a corrugation.

Batten plate. Plate rigidly connected to two parallel components of a built-up column or beam designed to transmit shear between the components.

Beam. Structural member that has the primary function of resisting bending moments.

Beam-column. Structural member that resists both axial force and bending moment.

Bearing†. In a connection, limit state of shear forces transmitted by the mechanical fastener to the connection elements.

Bearing (local compressive yielding)†. Limit state of local compressive yielding due to the action of a member bearing against another member or surface.

Bearing-type connection. Bolted connection where shee forces are
transmitted by the bolt bearing against the connection elements.

Block shear rupture†. In a connection, limit state of tension rupture along one path and shear yielding or shear rupture along another path.

Braced frame†. Essentially vertical truss system that provides resistance to lateral forces and provides stability for the structural system.

Braced panel. Wall of HSS branch member.

Branch member. In an HSS connection, member that terminates at a chord member or main member.

Buckling†. Limit state of sudden change in the geometry of a structure or any of its elements under a critical loading condition.

Buckling strength. Strength for instability limit states.

Built-up member, cross-section, section, shape. Member, cross-section, section or shape fabricated from structural steel elements that are welded or bolted together.

Camber. Curvature fabricated into a beam or truss so as to compensate for deflection induced by loads.

Chord member. In an HSS connection, primary member that extends through a truss connection.

Cladding. Exterior covering of structure.

Cold-formed steel structural member†. Shape manufactured by press-braking blanks sheared from sheets, cut lengths of coils or plates, or by roll forming cold- or hot-rolled coils or sheets; both forming operations being performed at ambient room temperature, that is, without manifest addition of heat such as would be required for hot forming.

Collector. Also know as drag strut; member that serves to transfer loads between floor diaphragms and the members of the seismic force resisting system.

Column. Structural member that has the primary function of resisting axial force.

Combined system. Structure comprised of two or more lateral load-resisting systems of different type.

Compact section. Section capable of developing a fully plastic stress distribution and possessing a rotation capacity of approximately three before the onset of local buckling.

Complete-joint-penetration groove weld (CJP). Groove weld in which weld metal extends through the joint thickness, except as permitted for HSS connections.

Composite. Condition in which steel and concrete elements and members work as a unit in the distribution of internal forces.

Composite component. Member, connecting element or assemblage in which steel and concrete elements work as a unit in the distribution of internal forces, with the exception of the special case of composite beams where steel anchors are embedded in a solid concrete slab or in a slab cast on formed steel deck.

Concrete breakout surface. The surface delineating a volume of concrete surrounding a steel headed stud anchor that separates from...
Concrete crushing. Limit state of compressive failure in concrete having reached the ultimate strain.

Concrete haunch. In a composite floor system constructed using a formed steel deck, the section of solid concrete that results from stopping the deck on each side of the girder.

Concrete-encased beam. Beam totally encased in concrete cast integrally with the slab.

Connection†. Combination of structural elements and joints used to transmit forces between two or more members.

Construction documents. Design drawings, specifications, shop drawings and erection drawings.

Continuous Inspection (CI). Full-time observation or inspection of work requiring inspection, with the inspector present in the area where the work is being performed.

Cope. Cutout made in a structural member to remove a flange and conform to the shape of an intersecting member.

Cover plate. Plate welded or bolted to the flange of a member to increase cross-sectional area, section modulus or moment of inertia.

Cross connection. HSS connection in which forces in branch members or connecting elements transverse to the main member are primarily equilibrated by forces in other branch members or connecting elements on the opposite side of the main member.

Design drawings. Graphic and pictorial documents showing the design, location and dimensions of the work. These documents generally include plans, elevations, sections, details, schedules, diagrams and notes.

Design load*†. Applied load determined in accordance with either LRFD load combinations or ASD load combinations, whichever is applicable.

Design strength*†. Resistance factor multiplied by the nominal strength, φRn.

Design stress range. Magnitude of change in stress due to the repeated application and removal of service live loads. For locations subject to stress reversal it is the algebraic difference of the peak stresses.

Design stress*. Design strength divided by the appropriate section property, such as section modulus or cross section area.

Design wall thickness. HSS wall thickness assumed in the determination of section properties.

Diagonal stiffener. Web stiffener at column panel zone oriented diagonally to the flanges, on one or both sides of the web.

Diaphragm plate. Plate possessing in-plane shear stiffness and strength, used to transfer forces to the supporting elements.

Diaphragm†. Roof, floor or other membrane or bracing system that transfers in-plane forces to the lateral force resisting system.

Direct analysis method. Design method for stability that captures the effects of residual stresses and initial out-of-plumbness of frames by reducing stiffness and applying notional loads in a second-order analysis.

Direct bond interaction. In a composite section, mechanism by which
force is transferred between steel and concrete by bond stress.

Distortional failure. Limit state of an HSS truss connection based on distortion of a rectangular HSS chord member into a rhomboidal shape.

Double curvature. Deformed shape of a beam with one or more inflection points within the span.

Double-concentrated forces. Two equal and opposite forces that form a couple on the same side of the loaded member.

Doupler. Plate added to, and parallel with, a beam or column web to increase strength at locations of concentrated forces.

Drift. Lateral deflection of structure.

Effective length factor, K. Ratio between the effective length and the unbraced length of the member.

Effective length. Length of an otherwise identical column with the same strength when analyzed with pinned end conditions.

Effective net area. Net area modified to account for the effect of shear lag.

Effective section modulus. Section modulus reduced to account for buckling of slender compression elements.

Effective width. Reduced width of a plate or slab with an assumed uniform stress distribution which produces the same effect on the behavior of a structural member as the actual plate or slab width with its nonuniform stress distribution.

Elastic analysis. Structural analysis based on the assumption that the structure returns to its original geometry on removal of the load.

Encased composite column. Composite column consisting of a structural concrete column and one or more embedded steel shapes.

End panel. Web panel with an adjacent panel on one side only.

End return. Length of fillet weld that continues around a corner in the same plane.

Engineer of record. Licensed professional responsible for sealing the design drawings and specifications.

Expansion rocker. Support with curved surface on which a member bears that can tilt to accommodate expansion.

Expansion roller. Round steel bar on which a member bears that can roll to accommodate expansion.

Eyebar. Pin-connected tension member of uniform thickness, with forged or thermally cut head of greater width than the body, proportioned to provide approximately equal strength in the head and body.

Factored load. Product of a load factor and the nominal load.

Fastener. Generic term for bolts, rivets, or other connecting devices.

Fatigue. Limit state of crack initiation and growth resulting from repeated application of live loads.

Faying surface. Contact surface of connection elements transmitting a shear force.

Filled composite column. Composite column consisting of a shell of HSS filled with structural concrete.

Filler metal. Metal or alloy added in making a welded joint.

Specification for Structural Steel Buildings, Public Review Draft dated March 1, 2009

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
Filler. Plate used to build up the thickness of one component.

Fillet weld reinforcement. Fillet welds added to groove welds.

Fillet weld. Weld of generally triangular cross section made between intersecting surfaces of elements.

Finished surface. Surfaces fabricated with a roughness height value measured in accordance with ANSI/ASME B46.1 that is equal to or less than 500.

First-order analysis. Structural analysis in which equilibrium conditions are formulated on the undeformed structure; second-order effects are neglected.

Fitted bearing stiffener. Stiffener used at a support or concentrated load that fits tightly against one or both flanges of a beam so as to transmit load through bearing.

Flare bevel groove weld. Weld in a groove formed by a member with a curved surface in contact with a planar member.

Flare V-groove weld. Weld in a groove formed by two members with curved surfaces.

Flat width. Nominal width of rectangular HSS minus twice the outside corner radius. In the absence of knowledge of the corner radius, the flat width may be taken as the total section width minus three times the thickness.

Flexural buckling†. Buckling mode in which a compression member deflects laterally without twist or change in cross-sectional shape.

Flexural-torsional buckling†. Buckling mode in which a compression member bends and twists simultaneously without change in cross-sectional shape.

Force. Resultant of distribution of stress over a prescribed area.

Formed section. See cold-formed steel structural member.

Formed steel deck. In composite construction, steel cold formed into a decking profile used as a permanent concrete form.

Fully restrained moment connection. Connection capable of transferring moment with negligible rotation between connected members.

Gage. Transverse center-to-center spacing of fasteners.

Gap connection. HSS truss connection with a gap or space on the chord face between intersecting branch members.

Geometric axis. Axis parallel to web, flange or angle leg.

Girder filler. In a composite floor system constructed using a formed steel deck, narrow piece of sheet steel used as a fill between the edge of a deck sheet and the flange of a girder.

Girder. See Beam.

Girt†. Horizontal structural member that supports wall panels and is primarily subjected to bending under horizontal loads, such as wind load.

Gouge. Relatively smooth surface groove or cavity resulting from plastic deformation or removal of material.

Gravity axis. Axis through the center of gravity of a member along its length.

Gravity frame. Portion of the framing system not included in the lateral load resisting system.

Gravity load. Load acting in the downward direction, such as that...
produced by dead and live loads.

Grip (of bolt). Thickness of material through which a bolt passes.

Groove weld. Weld in a groove between connection elements. See also AWS D1.1.

Gusset plate. Plate element connecting truss members or a strut or brace to a beam or column.

High-strength bolt. Fastener supplied in compliance with ASTM A325, A325M, A490, A490M, F1852, F2280 or an alternate fastener as permitted in Section J3.1.

Horizontal shear. In a composite beam, force at the interface between steel and concrete surfaces.

HSS. Square, rectangular or round hollow structural steel section produced in accordance with a pipe or tubing product specification.

Inelastic analysis. Structural analysis that takes into account inelastic material behavior, including plastic analysis.

In-plane instability*. Limit state involving buckling in the plane of the frame or the member.

Instability*. Limit state reached in the loading of a structural component, frame or structure in which a slight disturbance in the loads or geometry produces large displacements.

Introduction length. Length along an encased composite column in which the column force is assumed to be transferred into or out of the steel shape.

Joint eccentricity. In an HSS truss connection, perpendicular distance from chord member center of gravity to intersection of branch member work points.

Joint†. Area where two or more ends, surfaces, or edges are attached. Categorized by type of fastener or weld used and method of force transfer.

k-area. The region of the web that extends from the tangent point of the web and the flange-web fillet (AISC k dimension) a distance 1½ in. (38 mm) into the web beyond the k dimension.

K-connection. HSS connection in which forces in branch members or connecting elements transverse to the main member are primarily equilibrated by forces in other branch members or connecting elements on the same side of the main member.

Lacing. Plate, angle or other steel shape, in a lattice configuration, that connects two steel shapes together.

Lap joint. Joint between two overlapping connection elements in parallel planes.

Lateral bracing. Member or system that is designed to inhibit lateral buckling or lateral-torsional buckling of primary framing members.

Lateral load resisting system. Structural system designed to resist lateral loads and provide stability for the structure as a whole.

Lateral load. Load acting in a lateral direction, such as that produced by wind or earthquake effects.

Lateral-torsional buckling†. Buckling mode of a flexural member involving deflection out of the plane of bending occurring simultaneously with twist about the shear center of the cross-section.

Leaning column. Column designed to carry gravity loads only, with
connections that are not intended to provide resistance to lateral loads.

Length effects. Consideration of the reduction in strength of a member based on its unbraced length.

Limit state†. Condition in which a structure or component becomes unfit for service and is judged either to be no longer useful for its intended function (serviceability limit state) or to have reached its ultimate load-carrying capacity (strength limit state).

Load†. Force or other action that results from the weight of building materials, occupants and their possessions, environmental effects, differential movement, or restrained dimensional changes.

Load effect†. Forces, stresses and deformations produced in a structural component by the applied loads.

Load factor†. Factor that accounts for deviations of the nominal load from the actual load, for uncertainties in the analysis that transforms the load into a load effect and for the probability that more than one extreme load will occur simultaneously.

Local bending** †. Limit state of large deformation of a flange under a concentrated transverse force.

Local buckling**. Limit state of buckling of a compression element within a cross section.

Local yielding** †. Yielding that occurs in a local area of an element.

LRFD (Load and Resistance Factor Design)†. Method of proportioning structural components such that the design strength equals or exceeds the required strength of the component under the action of the LRFD load combinations.

LRFD load combination†. Load combination in the applicable building code intended for strength design (load and resistance factor design).

Main member. In an HSS connection, chord member, column or other HSS member to which branch members or other connecting elements are attached.

Mechanism. Structural system that includes a sufficient number of real hinges, plastic hinges or both, so as to be able to articulate in one or more rigid body modes.

Mill scale. Oxide surface coating on steel formed by the hot rolling process.

Moment connection. Connection that transmits bending moment between connected members.

Moment frame†. Framing system that provides resistance to lateral loads and provides stability to the structural system, primarily by shear and flexure of the framing members and their connections.

Negative Flexural Strength. Flexural strength of a composite beam in regions with flexural tension on the top surface.

Net area. Gross area reduced to account for removed material.

Nodal brace. Brace that prevents lateral movement or twist independently of other braces at adjacent brace points (see relative brace).

Nominal dimension. Designated or theoretical dimension, as in tables of section properties.

Nominal load†. Magnitude of the load specified by the applicable
Nominal rib height. In a formed steel deck, height of deck measured from the underside of the lowest point to the top of the highest point.

Nominal strength.*†. Strength of a structure or component (without the resistance factor or safety factor applied) to resist load effects, as determined in accordance with this Specification.

Noncompact section. Section that can develop the yield stress in its compression elements before local buckling occurs, but cannot develop a rotation capacity of three.

Nondestructive testing. Inspection procedure wherein no material is destroyed and the integrity of the material or component is not affected.

Notch toughness. Energy absorbed at a specified temperature as measured in the Charpy V-notch impact test.

Notional load. Virtual load applied in a structural analysis to account for destabilizing effects that are not otherwise accounted for in the design provisions.

Out-of-plane buckling†. Limit state of a beam, column or beam-column involving lateral or lateral- torsional buckling.

Overlap connection. HSS truss connection in which intersecting branch members overlap.

Panel zone. Web area of beam-to-column connection delineated by the extension of beam and column flanges through the connection, transmitting moment through a shear panel.

Partial-joint-penetration groove weld (PJP). Groove weld in which the penetration is intentionally less than the complete thickness of the connected element.

Partially restrained moment connection. Connection capable of transferring moment with rotation between connected members that is not negligible.

Percent elongation. Measure of ductility, determined in a tensile test as the maximum elongation of the gage length divided by the original gage length.

Periodic Inspection (PI). Part-time or intermittent observation or inspection of work requiring inspection that is performed prior to, during, or after the work.

Permanent load†. Load in which variations over time are rare or of small magnitude. All other loads are variable loads.

Pipe. See HSS.

Pitch. Longitudinal center-to-center spacing of fasteners. Center-to-center spacing of bolt threads along axis of bolt.

Plastic analysis. Structural analysis based on the assumption of rigid-plastic behavior, that is, that equilibrium is satisfied and the stress is at or below the yield stress throughout the structure.

Plastic hinge. Yielded zone that forms in a structural member when the plastic moment is attained. The member is assumed to rotate further as if hinged, except that such rotation is restrained by the plastic moment.

Plastic moment. Theoretical resisting moment developed within a fully
yielded cross section.

Plastic stress distribution method. In a composite member, method for determining stresses assuming that the steel section and the concrete in the cross section are fully plastic.

Plastification. In an HSS connection, limit state based on an out-of-plane flexural yield line mechanism in the chord at a branch member connection.

Plate girder. Built-up beam.

Plug weld. Weld made in a circular hole in one element of a joint fusing that element to another element.

Ponding. Retention of water due solely to the deflection of flat roof framing.

Positive flexural strength. Flexural strength of a composite beam in regions having flexural compression on the top surface.

Pretensioned bolt. Bolt tightened to the specified minimum pretension.

Pretensioned joint. Joint with high-strength bolts tightened to the specified minimum pretension.

Properly developed. Reinforcing bars detailed to yield in a ductile manner before crushing of the concrete occurs. Bars meeting the provisions of ACI 318 insofar as development length, spacing and cover, shall be deemed to be properly developed.

Prying action. Amplification of the tension force in a bolt caused by leverage between the point of applied load, the bolt and the reaction of the connected elements.

Punching load. In an HSS connection, component of branch member force perpendicular to a chord.

Purlin. Horizontal structural member that supports roof deck and is primarily subjected to bending under vertical loads such as snow, wind or dead loads.

P-δ effect. Effect of loads acting on the deflected shape of a member between joints or nodes.

P-Δ effect. Effect of loads acting on the displaced location of joints or nodes in a structure. In tiered building structures, this is the effect of loads acting on the laterally displaced location of floors and roofs.

Quality assurance. Monitoring and inspection tasks performed by an agency or firm other than the fabricator or erector to ensure that the material provided and work performed by the fabricator and erector meet the requirements of the approved construction documents and referenced standards. **Quality assurance** includes those tasks designated “special inspection” by the applicable building code.

Quality assurance inspector (QAI). Individual designated to provide quality assurance inspection for the work being performed.

Quality assurance plan (QAP). Program in which the agency or firm responsible for quality assurance maintains detailed monitoring and inspection procedures to ensure conformance with the approved construction documents and referenced standards.

Quality control. Controls and inspections implemented by the fabricator or erector, as applicable, to ensure that the material provided and work performed meet the requirements of the approved construction documents and referenced standards.
Quality control inspector (QCI). Individual designated to perform quality control inspection tasks for the work being performed.

Quality control program (QCP). Program in which the fabricator or erector, as applicable, maintains detailed fabrication or erection and inspection procedures to ensure conformance with the approved design drawings, specifications, and referenced standards.

Reentrant. In a cope or weld access hole, a cut at an abrupt change in direction in which the exposed surface is concave.

Relative brace. Brace that controls the relative movement of two adjacent brace points along the length of a beam or column or the relative lateral displacement of two stories in a frame (see nodal brace).

Required strength†. Forces, stresses and deformations acting on a structural component, determined by either structural analysis, for the LRFD or ASD load combinations, as appropriate, or as specified by this Specification or Standard.

Resistance factor, \(\phi \). Factor that accounts for unavoidable deviations of the nominal strength from the actual strength and for the manner and consequences of failure.

Reverse curvature. See double curvature.

Root of joint. Portion of a joint to be welded where the members are closest to each other.

Rotation capacity. Incremental angular rotation that a given shape can accept prior to excessive load shedding, defined as the ratio of the inelastic rotation attained to the idealized elastic rotation at first yield.

Rupture strength†. Strength limited by breaking or tearing of members or connecting elements.

Safety factor, \(\Omega \). Factor that accounts for deviations of the actual strength from the nominal strength, deviations of the actual load from the nominal load, uncertainties in the analysis that transforms the load into a load effect, and for the manner and consequences of failure.

Second-order analysis. Structural analysis in which equilibrium conditions are formulated on the deformed structure; second-order effects (both \(P-\delta \) and \(P-\Delta \), unless specified otherwise) are included.

Second-order effect. Effect of loads acting on the deformed configuration of a structure; includes \(P-\delta \) effect and \(P-\Delta \) effect.

Seismic response modification factor. Factor that reduces seismic load effects to strength level.

Service load combination. Load combination under which serviceability limit states are evaluated.

Service load†. Load under which serviceability limit states are evaluated.

Serviceability limit state†. Limiting condition affecting the ability of a structure to preserve its appearance, maintainability, durability or the comfort of its occupants or function of machinery, under normal usage.

Shear buckling†. Buckling mode in which a plate element, such as the
Shear lag. Non-uniform tensile stress distribution in a member or connecting element in the vicinity of a connection.

Shear wall†. Wall that provides resistance to lateral loads in the plane of the wall and provides stability for the structural system.

Shear yielding (punching). In an HSS connection, limit state based on out-of-plane shear strength of the chord wall to which branch members are attached.

Sheet steel. In a composite floor system, steel used for closure plates or miscellaneous trimming in a formed steel deck.

Shim. Thin layer of material used to fill a space between faying or bearing surfaces.

Sidesway Buckling (frame) Stability limit state involving lateral sway instability of a frame.

Simple connection. Connection that transmits negligible bending moment between connected members.

Single-concentrated force. Tensile or compressive force applied normal to the flange of a member.

Single curvature. Deformed shape of a beam with no inflection point within the span.

Slender-element section. Cross section possessing plate components of sufficient slenderness such that local buckling in the elastic range will occur.

Slip. In a bolted connection, limit state of relative motion of connected parts prior to the attainment of the available strength of the connection.

Slip-critical connection. Bolted connection designed to resist movement by friction on the faying surface of the connection under the clamping force of the bolts.

Slot weld. Weld made in an elongated hole fusing an element to another element.

Snug-tightened joint. Joint with the connected plies in firm contact as specified in Chapter J.

Specifications. Written documents containing the requirements for materials, standards and workmanship.

Specified minimum tensile strength. Lower limit of tensile strength specified for a material as defined by ASTM.

Specified minimum yield stress†. Lower limit of yield stress specified for a material as defined by ASTM.

Splice. Connection between two structural elements joined at their ends to form a single, longer element.

Stability. Condition in the loading of a structural component, frame or structure in which a slight disturbance in the loads or geometry does not produce large displacements.

Statically loaded. Not subject to significant fatigue stresses. Gravity, wind and seismic loadings are considered to be static loadings.

Steel anchor. Headed stud or hot rolled channel welded to a steel
member and embodied in concrete of a composite member to transmit shear, tension or a combination of shear and tension at the interface of the two materials.

Stiffened element. Flat compression element with adjoining out-of-plane elements along both edges parallel to the direction of loading.

Stiffener. Structural element, usually an angle or plate, attached to a member to distribute load, transfer shear or prevent buckling.

Stiffness. Resistance to deformation of a member or structure, measured by the ratio of the applied force (or moment) to the corresponding displacement (or rotation).

Strain compatibility method. In a composite member, method for determining the stresses considering the stress-strain relationships of each material and its location with respect to the neutral axis of the cross section.

Strength limit state†. Limiting condition in which the maximum strength of a structure or its components is reached.

Stress. Force per unit area caused by axial force, moment, shear or torsion.

Stress concentration. Localized stress considerably higher than average due to abrupt changes in geometry or localized loading.

Strong axis. Major principal centroidal axis of a cross section.

Structural analysis†. Determination of load effects on members and connections based on principles of structural mechanics.

Structural component†. Member, connector, connecting element or assemblage.

Structural steel. Steel elements as defined in Section 2.1 of the AISC Code of Standard Practice for Steel Buildings and Bridges.

Structural system. An assemblage of load-carrying components that are joined together to provide interaction or interdependence.

T-connection. HSS connection in which the branch member or connecting element is perpendicular to the main member and in which forces transverse to the main member are primarily equilibrated by shear in the main member.

Tensile strength (of material)†. Maximum tensile stress that a material is capable of sustaining as defined by ASTM.

Tensile strength (of member). Maximum tension force that a member is capable of sustaining.

Tension and shear rupture†. In a bolt or other type of mechanical fastener, limit state of rupture due to simultaneous tension and shear force.

Tension field action. Behavior of a panel under shear in which diagonal tensile forces develop in the web and compressive forces develop in the transverse stiffeners in a manner similar to a Pratt truss.

Thermally cut. Cut with gas, plasma or laser.

Tie plate. Plate element used to join two parallel components of a built-up column, girder or strut rigidly connected to the parallel components and designed to transmit shear between them.

Toe of fillet. Junction of a fillet weld face and base metal. Tangent point of a fillet in a rolled shape.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
Torsional bracing. Bracing resisting twist of a beam or column.

Torsional buckling†. Buckling mode in which a compression member twists about its shear center axis.

Transverse reinforcement. In an encased concrete composite column, steel reinforcement in the form of closed ties or welded wire fabric providing confinement for the concrete surrounding the steel shape.

Transverse stiffener. Web stiffener oriented perpendicular to the flanges, attached to the web.

Tubing. See HSS.

Turn-of-nut method. Procedure whereby the specified pretension in high-strength bolts is controlled by rotating the fastener component a predetermined amount after the bolt has been snug tightened.

Unbraced length. Distance between braced points of a member, measured between the centers of gravity of the bracing members.

Uneven load distribution. In an HSS connection, condition in which the load is not distributed through the cross section of connected elements in a manner that can be readily determined.

Unframed end. The end of a member not restrained against rotation by stiffeners or connection elements.

Unstiffened element. Flat compression element with an adjoining out-of-plane element along one edge parallel to the direction of loading.

Variable load†. Load not classified as permanent load.

Vertical bracing system. System of shear walls, braced frames or both, extending through one or more floors of a building.

Weak axis. Minor principal centroidal axis of a cross section.

Weathering steel. High-strength, low-alloy steel that, with suitable precautions, can be used in normal atmospheric exposures (not marine) without protective paint coating.

Web crippling†. Limit state of local failure of web plate in the immediate vicinity of a concentrated load or reaction.

Web sidesway buckling. Limit state of lateral buckling of the tension flange opposite the location of a concentrated compression force.

Weld metal. Portion of a fusion weld that has been completely melted during welding. Weld metal has elements of filler metal and base metal melted in the weld thermal cycle.

Weld root. See root of joint.

Y-connection. HSS connection in which the branch member or connecting element is not perpendicular to the main member and in which forces transverse to the main member are primarily equilibrated by shear in the main member.

Yield moment†. In a member subjected to bending, the moment at which the extreme outer fiber first attains the yield stress.

Yield point†. First stress in a material at which an increase in strain occurs without an increase in stress as defined by ASTM.

Yield strength†. Stress at which a material exhibits a specified limiting deviation from the proportionality of stress to strain as defined by ASTM.

Yield stress†. Generic term to denote either yield point or yield strength, as appropriate for the material.

Yielding†. Limit state of inelastic deformation that occurs when the yield
stress is reached.

Yielding (plastic moment)†. Yielding throughout the cross section of a member as the bending moment reaches the plastic moment.

Yielding (yield moment)†. Yielding at the extreme fiber on the cross section of a member when the bending moment reaches the yield moment.
CHAPTER A
GENERAL PROVISIONS

This chapter states the scope of the Specification, summarizes referenced specification, code, and standard documents, and provides requirements for materials and structural design documents.

The chapter is organized as follows:

A1. Scope
A2. Referenced Specifications, Codes and Standards
A3. Material
A4. Structural Design Drawings and Specifications

A1. SCOPE

The Specification for Structural Steel Buildings, hereafter referred to as the Specification, shall apply to the design of the structural steel system, where the steel elements are defined in the AISC Code of Standard Practice for Steel Buildings and Bridges, Section 2.1.

This Specification includes the Symbols, the Glossary, Chapters A through M, and Appendices 1 through 8. The Commentary and the User Notes interspersed throughout are not part of the Specification.

User Note: User notes are intended to provide concise and practical guidance in the application of the provisions.

This Specification sets forth criteria for the design, fabrication and erection of structural steel buildings and other structures, where other structures are defined as structures designed, fabricated and erected in a manner similar to buildings, with building-like vertical and lateral load resisting elements. Wherever this Specification refers to the applicable building code and there is no local building code, the loads, load combinations, system limitations, and general design requirements shall be those in SEI/ASCE 7.

Where conditions are not covered by the Specification, designs are permitted to be based on tests or analysis, subject to the approval of the authority having jurisdiction.

Alternate methods of analysis and design are permitted, provided such alternate methods or criteria are acceptable to the authority having jurisdiction.

User Note: For the design of structural members, other than hollow structural sections (HSS), that are cold-formed to shapes, with elements not more than 1 in. (25 mm) in thickness, the provisions in the AISI North American Specification for the Design of Cold-Formed Steel Structural Members are recommended.

1. Seismic Applications

The Seismic Provisions for Structural Steel Buildings (ANSI/AISC 341) shall apply to the design of seismic force resisting systems of structural steel or of
structural steel acting compositely with reinforced concrete, unless specifically exempted by the applicable building code.

User Note: SEI/ASCE 7 (Table 12.2-1, Item H) specifically exempts structural steel systems, but not composite systems, in seismic design categories B and C if they are designed according to the Specification and the seismic loads are computed using a seismic response modification factor, R, of 3. For seismic design category A, SEI/ASCE 7 does specify lateral forces to be used as the seismic loads and effects, but these calculations do not involve the use of an R factor. Thus for seismic design category A it is not necessary to define a seismic force resisting system that meets any special requirements and the Seismic Provisions do not apply.

The provisions of Appendix 1 of this Specification shall not apply to the seismic design of buildings and other structures.

2. **Nuclear Applications**

The design, fabrication and erection of nuclear structures shall comply with the requirements of the Specification for Safety-Related Steel Structures for Nuclear Facilities (ANSI/AISC N690), in addition to the provisions of this Specification.

A2. **REFERENCED SPECIFICATIONS, CODES AND STANDARDS**

The following specifications, codes and standards are referenced in this Specification:

- ACI International (ACI)
 - ACI 318-02 Building Code Requirements for Structural Concrete and Commentary
 - ACI 318M-02 Metric Building Code Requirements for Structural Concrete and Commentary
 - ACI 349-06 (ADD TITLE)

- American Institute of Steel Construction, Inc. (AISC)
 - AISC 303-05 Code of Standard Practice for Steel Buildings and Bridges
 - ANSI/AISC 341-05 Seismic Provisions for Structural Steel Buildings
 - ANSI/AISC N690L-03 Load and Resistance Factor Design Specification for Steel Safety-Related Structures for Nuclear Facilities

- American Society of Civil Engineers (ASCE)
 - SEI/ASCE 7-02 Minimum Design Loads for Buildings and Other Structures

- American Society of Mechanical Engineers (ASME)
 - ASME B18.2.6-96 Fasteners for Use in Structural Applications
 - ASME B46.1-95 Surface Texture, Surface Roughness, Waviness, and Lay

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
Seamless High-Strength Low-Alloy Structural Tubing
A668/A668M-04 Standard Specification for Steel Forgings, Carbon and Alloy, for General Industrial Use
A709/A709M-04 Standard Specification for Carbon and High-Strength Low-Alloy Structural Steel Shapes, Plates, and Bars and Quenched-and-Tempered Alloy Structural Steel Plates for Bridges
A751-01 Standard Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products
A852/A852M-03 Standard Specification for Quenched and Tempered Low-Alloy Structural Steel Plate with 70 ksi [485 MPa] Minimum Yield Strength to 4 in. [100 mm] Thick
A913/A913M-04 Standard Specification for High-Strength Low-Alloy Steel Shapes of Structural Quality, Produced by Quenching and Self-Tempering Process (QST)
A992/A992M-04 Standard Specification for Structural Steel Shapes

User Note: ASTM A992 is the most commonly referenced specification for W shapes.

A1011/A1011M-04 Standard Specification for Steel, Sheet and Strip, Hot-Rolled, Carbon, Structural, High-Strength Low-Alloy and High-Strength Low-Alloy with Improved Formability
A1043/A1043M-05 Standard Specification for Structural Steel with Low Yield to Tensile Ratio for Use in Buildings
C33-03 Standard Specification for Concrete Aggregates
C330-04 Standard Specification for Lightweight Aggregates for Structural Concrete
E119-00a Standard Test Methods for Fire Tests of Building Construction and Materials
E165-02 Standard Test Method for Liquid Penetrant Examination
E709-01 Standard Guide for Magnetic Particle Examination
F436-03 Standard Specification for Hardened Steel Washers
F844-07a Standard Specification for Washers, Steel Plain (Flat), Unhardened for General Use
F959-02 Standard Specification for Compressible-Washer-Type Direct Tension Indicators for Use with Structural Fasteners
F1554-99 Standard Specification for Anchor Bolts, Steel, 36, 55, and 105 ksi Yield Strength

User Note: ASTM F1554 is the most commonly referenced specification for anchor rods. Grade and weldability must be specified.

F1852-04 Standard Specification for "Twist-Off" Type Tension Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 120/105 ksi Minimum Tensile Strength
F2280-06 Standard Specification for Twist Off Type Tension Control Structural Bolt/Nut/Washer Assemblies, Steel, Heat Treated, 150 ksi Minimum Tensile Strength

American Welding Society (AWS)
A3. MATERIAL

1. Structural Steel Materials

Material test reports or reports of tests made by the fabricator or a testing laboratory shall constitute sufficient evidence of conformity with one of the above listed ASTM standards. For hot-rolled structural shapes, plates, and bars, such tests shall be made in accordance with ASTM A6/A6M; for sheets, such tests shall be made in accordance with ASTM A568/A568M; for tubing and pipe, such tests shall be made in accordance with the requirements of the applicable ASTM standards listed above for those product forms. If requested, the fabricator shall provide an affidavit stating that the structural steel furnished meets the requirements of the grade specified.

1a. ASTM Designations

Structural steel material conforming to one of the following ASTM specifications is approved for use under this Specification:

(1) Hot-rolled structural shapes

ASTM A36/A36M
ASTM A529/A529M
ASTM A572/A572M
ASTM A588/A588M
ASTM A709/A709M
ASTM A913/A913M
ASTM A992/A992M
ASTM A1043/A1043M
(2) Structural tubing

ASTM A500
ASTM A501
ASTM A618
ASTM A847

(3) Pipe

ASTM A53/A53M, Gr. B

(4) Plates

ASTM A36/A36M
ASTM A242/A242M
ASTM A283/A283M
ASTM A514/A514M
ASTM A529/A529M
ASTM A572/A572M
ASTM A588/A588M
ASTM A709/A709M
ASTM A852/A852M
ASTM A1011/A1011M
ASTM A1043/A1043M

(5) Bars

ASTM A36/A36M
ASTM A529/A529M
ASTM A572/A572M
ASTM A709/A709M

(6) Sheets

ASTM A606
A1011/A1011M SS, HSLAS, AND HSLAS-F

1b. Unidentified Steel

Unidentified steel free of injurious defects is permitted to be used only for members or details whose failure will not reduce the strength of the structure, either locally or overall. Such use shall be subject to the approval of the Engineer of Record.

User Note: Unidentified steel may be used for details where the precise mechanical properties and weldability are not of concern. These are commonly curb plates, shims and other similar pieces.

1c. Rolled Heavy Shapes

ASTM A6/A6M hot-rolled shapes with a flange thickness exceeding 2 in. (50 mm), used as members subject to primary (computed) tensile forces due to tension or flexure and spliced using complete-joint-penetration groove welds that fuse through the thickness of the member, shall be specified as

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
follows. The structural design documents shall require that such shapes be supplied with Charpy V-Notch (CVN) impact test results in accordance with ASTM A6/A6M, Supplementary Requirement S30, Charpy V-Notch Impact Test for Structural Shapes – Alternate Core Location. The impact test shall meet a minimum average value of 20 ft-lbs (27 J) absorbed energy at +70 °F (+21 °C).

The above requirements do not apply if the splices and connections are made by bolting. The above requirements do not apply to hot-rolled shapes with a flange thickness exceeding 2 in. (50 mm) that have shapes with flange or web elements less than 2 in. (50 mm) thick welded with complete-joint-penetration groove welds to the face of the shapes with thicker elements.

User Note: Additional requirements for joints in heavy rolled members are given in Sections J1.5, J1.6, J2.6 and M2.2.

1d. Built-Up Heavy Shapes

Built-up cross-sections consisting of plates with a thickness exceeding 2 in. (50 mm), used as members subject to primary (computed) tensile forces due to tension or flexure and spliced or connected to other members using complete-joint-penetration groove welds that fuse through the thickness of the plates, shall be specified as follows. The structural design documents shall require that the steel be supplied with Charpy V-Notch impact test results in accordance with ASTM A6/A6M, Supplementary Requirement S5, Charpy V-Notch Impact Test. The impact test shall be conducted in accordance with ASTM A673/A673M, Frequency P, and shall meet a minimum average value of 20 ft-lbs (27 J) absorbed energy at +70 °F (+21 °C).

The above requirements also apply to built-up cross-sections consisting of plates exceeding 2 in. (50 mm) that are welded with complete-joint-penetration groove welds to the face of other sections.

User Note: Additional requirements for joints in heavy built-up members are given in Sections J1.5, J1.6, J2.6 and M2.2.

2. Steel Castings and Forgings

Steel castings shall conform to ASTM A216/A216M, Grade WCB with Supplementary Requirement S11. Steel forgings shall conform to ASTM A668/A668M. Test reports produced in accordance with the above reference standards shall constitute sufficient evidence of conformity with such standards.

3. Bolts, Washers and Nuts

Bolt, washer and nut material conforming to one of the following ASTM specifications is approved for use under this Specification:

(1) Bolts:

- ASTM A307
- ASTM A325
- ASTM A325M

Specification for Structural Steel Buildings, Public Review Draft dated March 1, 2009

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
(2) Nuts:

ASTM A194/A194M
ASTM A563
ASTM A563M

(3) Washers:

ASTM F436
ASTM F436M
ASTM F844

(4) Compressible-Washer-Type Direct Tension Indicators:

ASTM F959
ASTM F959M

Manufacturer’s certification shall constitute sufficient evidence of conformity with the standards.

4. Anchor Rods and Threaded Rods

Anchor rod and threaded rod material conforming to one of the following ASTM specifications is approved for use under this Specification:

ASTM A36/A36M
ASTM A193/A193M
ASTM A354
ASTM A449
ASTM A572/A572M
ASTM A588/A588M
ASTM F1554

User Note: ASTM F1554 is the preferred material specification for anchor rods. A449 material is acceptable for high-strength anchor rods and threaded rods of any diameter.

Threads on anchor rods and threaded rods shall conform to the Unified Standard Series of ASME B18.2.6 and shall have Class 2A tolerances.

Manufacturer’s certification shall constitute sufficient evidence of conformity with the standards.

5. Consumables for Welding

Filler metals and fluxes shall conform to one of the following specifications.
of the American Welding Society:
 AWS A5.1
 AWS A5.5
 AWS A5.17/A5.17M
 AWS A5.18
 AWS A5.20
 AWS A5.23/A5.23M
 AWS A5.25/A5.25M
 AWS A5.26/A5.26M
 AWS A5.28
 AWS A5.29
 AWS A5.32/A5.32M

Manufacturer’s certification shall constitute sufficient evidence of conformity with the standards. Filler metals and fluxes that are suitable for the intended application shall be selected.

6. **Stud Shear Connectors**

 Steel stud *shear connectors* shall conform to the requirements of *Structural Welding Code – Steel* (AWS D1.1).

 Manufacturer’s certification shall constitute sufficient evidence of conformity with AWS D1.1.

A4. STRUCTURAL DESIGN DRAWINGS AND SPECIFICATIONS

 The structural design drawings and specifications shall meet the requirements in the *Code of Standard Practice for Steel Buildings and Bridges.*
CHAPTER B
DESIGN REQUIREMENTS

This chapter addresses general requirements for the analysis and design of steel structures applicable to all chapters of the specification.

The chapter is organized as follows:

B2. Loads and Load Combinations
B3. Design Basis
B4. Member Properties
B5. Fabrication, Erection and Quality Control
B6. Evaluation of Existing Structures

B1. GENERAL PROVISIONS

The design of members and connections shall be consistent with the intended behavior of the framing system and the assumptions made in the structural analysis. Unless restricted by the applicable building code, lateral load resistance and stability may be provided by any combination of members and connections.

B2. LOADS AND LOAD COMBINATIONS

The loads and load combinations shall be as stipulated by the applicable building code. In the absence of a building code, the loads and load combinations shall be those stipulated in Minimum Design Loads for Buildings and Other Structures (SEI/ASCE 7). For design purposes, the nominal loads shall be taken as the loads stipulated by the applicable building code.

User Note: For design according to Section B3.3 (LRFD), the load combinations in SEI/ASCE 7, Section 2.3 apply. For design according to Section B3.4 (ASD), the load combinations in SEI/ASCE 7, Section 2.4 apply.

B3. DESIGN BASIS

Designs shall be made according to the provisions for Load and Resistance Factor Design (LRFD) or to the provisions for Allowable Strength Design (ASD).

1. Required Strength

The required strength of structural members and connections shall be determined by structural analysis for the appropriate load combinations as stipulated in Section B2.

Design by elastic, inelastic or plastic analysis is permitted. Provisions for
inelastic and plastic analysis are as stipulated in Appendix 1, Inelastic Analysis and Design.

2. Limit States

Design shall be based on the principle that no applicable strength or serviceability limit state shall be exceeded under normal usage, when the structure is subjected to all appropriate load combinations.

Design criteria for member connections that are required to meet the structural integrity requirements of the applicable building code reflect nominal strength performance criteria, rather than the design strength (LRFD) or the allowable strength (ASD) of the Specification.

Limit states for simple shear connections, based on deformation or yielding of the connection components, are not considered limit states for meeting the structural integrity requirements. Rupture limit states for applicable nominal limit states must be checked.

For the purpose of satisfying only the structural integrity provisions of the applicable building code, bearing bolts in connections with short-slotted holes parallel to the direction of the tension load are permitted. For the purpose of checking bearing, these bolts shall be assumed to be located at the end of the slot.

3. Design for Strength Using Load and Resistance Factor Design (LRFD)

Design according to the provisions for Load and Resistance Factor Design (LRFD) satisfies the requirements of this Specification when the design strength of each structural component equals or exceeds the required strength determined on the basis of the LRFD load combinations. All provisions of this Specification, except for those in Section B3.4, shall apply.

Design shall be performed in accordance with Equation B3-1:

\[R_u \leq \phi R_n \]

(B3-1)

where

- \(R_u \) = required strength using LRFD load combinations
- \(R_n \) = nominal strength, specified in Chapters B through K
- \(\phi \) = resistance factor, specified in Chapters B through K
- \(\phi R_n \) = design strength

4. Design for Strength Using Allowable Strength Design (ASD)

Design according to the provisions for Allowable Strength Design (ASD) satisfies the requirements of this Specification when the allowable strength of each structural component equals or exceeds the required strength.
5. Design for Stability

Stability of the structure and its elements shall be determined in accordance with Chapter C.

6. Design of Connections

Connection elements shall be designed in accordance with the provisions of Chapters J and K. The forces and deformations used in design shall be consistent with the intended performance of the connection and the assumptions used in the structural analysis. Self-limiting inelastic deformations of the connections are permitted. At points of support, beams, girders and trusses shall be restrained against rotation about their longitudinal axis unless it can be shown by analysis that the restraint is not required.

User Note: Section 3.1.2 of the Code of Standard Practice addresses communication of necessary information for the design of connections.

6a. Simple Connections

A simple connection transmits a negligible moment. In the analysis of the structure, simple connections may be assumed to allow unrestrained relative rotation between the framing elements being connected. A simple connection shall have sufficient rotation capacity to accommodate the required rotation determined by the analysis of the structure.

6b. Moment Connections

Two types of moment connections, fully-restrained and partially-restrained, are permitted, as specified below.

(a) Fully-Restrained (FR) Moment Connections

A fully-restrained (FR) moment connection transfers moment with a negligible rotation between the connected members. In the analysis of the structure, the connection may be assumed to allow no relative rotation. An FR connection shall have sufficient strength and stiffness to maintain the angle between the connected members at the strength limit states.

(b) Partially-Restrained (PR) Moment Connections

Partially-restrained (PR) moment connections transfer moments, but the rotation between connected members is not negligible. In the analysis of the structure, the force-deformation response characteristics of the connection shall be included. The response characteristics of a
7. Moment Redistribution in Beams

The required flexural strength of beams satisfying the ductility requirements of Section 1.2 of Appendix 1 may be taken as nine-tenths of the negative moments at the points of support, produced by the gravity loading and determined by an elastic analysis satisfying the requirements of Chapter C, provided that the maximum positive moment is increased by one-tenth of the average elastic analysis negative moments. This reduction is not permitted for moments produced by loading on cantilevers, for design using partially-restrained (PR) moment connections, for design by inelastic analysis using the provisions of Appendix 1, for the design of connections, or for the design of columns. This reduction is permitted for design according to Section B3.3 (LRFD) and for design according to Section B3.4 (ASD). The required axial strength in the beam shall not exceed $0.15 \phi R_n$ for LRFD or $0.15 F_y A_g / \Omega_c$ for ASD.

For design according to Section B3.4 (ASD), all references to the design strengths, ϕR_n, shall be replaced by the corresponding allowable strengths, R_n / Ω, and all references to the required strengths using LRFD load combinations, R_n, shall be replaced by the required strengths using ASD load combinations, R_a, in the ductility requirements of Section 1.2 of Appendix 1.

8. Diaphragms and Collectors

Diaphragms and collectors shall be designed for forces that result from loads as stipulated in Section B2. They shall be designed in conformance with the provisions of Chapters C, D, E, F, G, H, I and J as applicable.

9. Design for Serviceability

The overall structure and the individual members, connections, and connectors shall be checked for serviceability. Requirements for serviceability design are given in Chapter L.

10. Design for Ponding

The roof system shall be investigated through structural analysis to assure adequate strength and stability under ponding conditions, unless the roof surface is provided with a slope of ¼ in. per ft (20 mm per meter) or greater toward points of free drainage or an adequate system of drainage is provided to prevent the accumulation of water. See Appendix 2, Design for Ponding, for methods of checking ponding.
11. Design for Fatigue

Fatigue shall be considered in accordance with Appendix 3, Design for Fatigue, for members and their connections subject to repeated loading. Fatigue need not be considered for seismic effects or for the effects of wind loading on normal building lateral load resisting systems and building enclosure components.

12. Design for Fire Conditions

Two methods of design for fire conditions are provided in Appendix 4, Structural Design for Fire Conditions: by Analysis and by Qualification Testing. Compliance with the fire protection requirements in the applicable building code shall be deemed to satisfy the requirements of this section and Appendix 4.

Nothing in this section is intended to create or imply a contractual requirement for the engineer of record responsible for the structural design or any other member of the design team.

User Note: Design by qualification testing is the prescriptive method specified in most building codes. Traditionally, on most projects where the architect is the prime professional, the architect has been the responsible party to specify and coordinate fire protection requirements. Design by analysis is a new engineering approach to fire protection. Designation of the person(s) responsible for designing for fire conditions is a contractual matter to be addressed on each project.

13. Design for Corrosion Effects

Where corrosion may impair the strength or serviceability of a structure, structural components shall be designed to tolerate corrosion or shall be protected against corrosion.

14. Anchorage to Concrete

See Chapter I for anchorage between steel and concrete acting compositely. See Chapter J for design of column bases and anchor rods.

B4. MEMBER PROPERTIES

1. Classification of Sections for Local Buckling

For compression, sections are classified as nonslender element or slender-element sections. For a section to qualify as a nonslender element section, the width-thickness ratios of its compression elements shall not exceed \(\lambda_c \) from Table B4.1a. If the width-thickness ratio of any element exceeds \(\lambda_c \), the section is a slender-element section.

For flexure, sections are classified as compact, noncompact or slender-element sections. For a section to qualify as compact its flanges must be continuously connected to the web or webs and the width-thickness ratios

American Institute of Steel Construction
of its compression elements shall not exceed the limiting width-thickness ratios λ_p from Table B4.1b. If the width-thickness ratio of one or more compression elements exceeds λ_p, but does not exceed λ_r from Table B4.1b, the section is noncompact. If the width-thickness ratio of any element exceeds λ_r, the section is a slender-element section.

1a. Unstiffened Elements

For *unstiffened elements* supported along only one edge parallel to the direction of the compression *force*, the width shall be taken as follows:

(a) For flanges of I-shaped members and tees, the width b is one-half the full-flange width, b_f.

(b) For legs of angles and flanges of channels and zees, the width b is the full nominal dimension.

(c) For plates, the width b is the distance from the free edge to the first row of *fasteners* or line of welds.

(d) For stems of tees, d is taken as the full nominal depth of the section.

User Note: Refer to Table B4.1 for the graphic representation of unstiffened element dimensions.

1b. Stiffened Elements

For *stiffened elements* supported along two edges parallel to the direction of the compression *force*, the width shall be taken as follows:

(a) For webs of rolled or formed sections, h is the clear distance between flanges less the fillet or corner radius at each flange; h_c is twice the distance from the centroid to the inside face of the compression flange less the fillet or corner radius.

(b) For webs of built-up sections, h is the distance between adjacent lines of *fasteners* or the clear distance between flanges when welds are used, and h_c is twice the distance from the centroid to the nearest line of fasteners at the compression flange or the inside face of the compression flange when welds are used; h_p is twice the distance from the plastic neutral axis to the nearest line of fasteners at the compression flange or the inside face of the compression flange when welds are used.

(c) For flange or *diaphragm plates* in built-up sections, the width b is the distance between adjacent lines of fasteners or lines of welds.
(d) For flanges of rectangular hollow structural sections (HSS), the width b is the clear distance between webs less the inside corner radius on each side. For webs of rectangular HSS, h is the clear distance between the flanges less the inside corner radius on each side. If the corner radius is not known, b and h shall be taken as the corresponding outside dimension minus three times the thickness. For round HSS, the diameter, D, is the chord diameter. The thickness, t, shall be taken as the design wall thickness, per Section B4.2.

(e) For perforated cover plates, b is the transverse distance between the nearest line of fasteners, and the net area of the plate is taken at the widest hole.

User Note: Refer to Table B4.1 for the graphic representation of stiffened element dimensions.

For tapered flanges of rolled sections, the thickness is the nominal value halfway between the free edge and the corresponding face of the web.
TABLE B4.1a

<table>
<thead>
<tr>
<th>Description of Element</th>
<th>Width Thickness Ratio</th>
<th>Limiting Width-Thickness Ratio</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flanges of rolled I-shape sections, plates projecting from rolled flanges sections, outstanding lip of pair of angles, and channels, and flanges of tees</td>
<td>$\frac{b}{t}$</td>
<td>0.80 $\frac{F_{y}}{F_{c}}$</td>
<td></td>
</tr>
<tr>
<td>Flanges of built-up I-shape sections and plates or angle legs projecting from built-up I-shaped sections</td>
<td>$\frac{b}{t}$</td>
<td>0.64 $\frac{F_{y}}{F_{c}}$</td>
<td></td>
</tr>
<tr>
<td>Legs of angles, legs of double angles with spacers, and all other undivided elements</td>
<td>$\frac{b}{t}$</td>
<td>0.43 $\frac{F_{y}}{F_{c}}$</td>
<td></td>
</tr>
<tr>
<td>Stems of tees</td>
<td>$\frac{b}{t}$</td>
<td>0.75 $\frac{F_{y}}{F_{c}}$</td>
<td></td>
</tr>
<tr>
<td>Walls of box-like symmetrical I-shape sections and channels</td>
<td>$\frac{t_{x}}{t_{y}}$</td>
<td>1.40 $\frac{F_{y}}{F_{c}}$</td>
<td></td>
</tr>
<tr>
<td>Width of rectangular tubes and beams of uniform thickness</td>
<td>$\frac{t_{x}}{t_{y}}$</td>
<td>1.40 $\frac{F_{y}}{F_{c}}$</td>
<td></td>
</tr>
<tr>
<td>Flanges over plates and diaphragm plates between legs of flanges or webs</td>
<td>$\frac{b}{t}$</td>
<td>1.40 $\frac{F_{y}}{F_{c}}$</td>
<td></td>
</tr>
<tr>
<td>All other undivided elements</td>
<td>$\frac{b}{t}$</td>
<td>1.40 $\frac{F_{y}}{F_{c}}$</td>
<td></td>
</tr>
<tr>
<td>Capsules</td>
<td>$\frac{b}{t}$</td>
<td>0.11 $\frac{F_{y}}{F_{c}}$</td>
<td></td>
</tr>
</tbody>
</table>

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
TABLE B4.1b

<table>
<thead>
<tr>
<th>Case</th>
<th>Description of Element</th>
<th>Width Thickness Ratio</th>
<th>Limiting Width-Thickness Ratios</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Flanges of I-shaped sections, channels, and luses</td>
<td>b/t</td>
<td>[\frac{b}{t} \leq \frac{E}{F_y}]</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Flanges of doubly and singly symmetric I-shaped sections</td>
<td>b/t</td>
<td>[\frac{b}{t} \leq \frac{E}{F_y}]</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Legs of single angles</td>
<td>b/t</td>
<td>[\frac{b}{t} \leq \frac{E}{F_y}]</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Flanges of all-shaped sections and channels in fillets about the weak axis</td>
<td>b/t</td>
<td>[\frac{b}{t} \leq \frac{E}{F_y}]</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>I-flanges of beams</td>
<td>b/d</td>
<td>[\frac{b}{d} \leq \frac{E}{F_y}]</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Walls of I-shaped sections and channels</td>
<td>h/L</td>
<td>[\frac{h}{L} \leq \frac{E}{F_y}]</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Walls of singly symmetric I-shaped sections (^5)</td>
<td>h/L</td>
<td>[\frac{h}{L} \leq \frac{E}{F_y}]</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Flanges of moment-resisting and box diaphragms</td>
<td>b/t</td>
<td>[\frac{b}{t} \leq \frac{E}{F_y}]</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Flanges of diaphragms and perimeter beams</td>
<td>b/t</td>
<td>[\frac{b}{t} \leq \frac{E}{F_y}]</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Walls of rectangular (W_k) and (W_k)-shaped sections (^6)</td>
<td>h/t</td>
<td>[\frac{h}{t} \leq \frac{E}{F_y}]</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Circular (MC)</td>
<td>D/t</td>
<td>[\frac{D}{t} \leq \frac{E}{F_y}]</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- \(b/t\) but shall not be taken less than 0.30 nor greater than 0.75 for calculation purposes. (See Cases 2 and 11)
- \(F_y = 0.7E\) for minor axis bending of interior web of built-up I-shaped members, and major axis bending of compact and noncompact web built-up I-shaped members with \(S_{yy}/S_{xy} > 0.7\) or \(P_r = 0.5\) for major axis bending of compact and noncompact web built-up I-shaped members with \(S_{yy}/S_{xy} < 0.7\). (See Case 11)
- \(M_y\) is the yield moment determined with the minimum elastic section modulus.

Specification for Structural Steel Buildings, Public Review Draft dated March 1, 2009

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2. Design Wall Thickness for HSS

The design wall thickness, \(t \), shall be used in calculations involving the wall thickness of hollow structural sections (HSS). The design wall thickness, \(t \), shall be taken equal to 0.93 times the nominal wall thickness for electric-resistance-welded (ERW) HSS and equal to the nominal thickness for submerged-arc-welded (SAW) HSS.

User Note: A pipe can be designed using the provisions of the Specification for round HSS sections as long as the pipe conforms to ASTM A53 Class B and the appropriate limitations of the Specification are used.

ASTM A500 HSS and ASTM A53 Grade B pipe are produced by an ERW process. An SAW process is used for cross sections that are larger than those permitted by ASTM A500.

3. Gross and Net Area Determination

3a. Gross Area

The gross area, \(A_g \), of a member is the total cross-sectional area.

3b. Net Area

The net area, \(A_n \), of a member is the sum of the products of the thickness and the net width of each element computed as follows:

In computing net area for tension and shear, the width of a bolt hole shall be taken as \(\frac{1}{16} \) in. (2 mm) greater than the **nominal dimension** of the hole.

For a chain of holes extending across a part in any diagonal or zigzag line, the net width of the part shall be obtained by deducting from the gross width the sum of the diameters or slot dimensions as provided in Section J3.2, of all holes in the chain, and adding, for each gage space in the chain, the quantity \(s^2 / 4g \)

where

\[s = \text{longitudinal center-to-center spacing (pitch) of any two consecutive holes, in. (mm)} \]

\[g = \text{transverse center-to-center spacing (gage) between fastener gage lines, in. (mm)} \]

For angles, the gage for holes in opposite adjacent legs shall be the sum of the gages from the back of the angles less the thickness.

For slotted HSS welded to a gusset plate, the net area, \(A_{n_0} \), is the gross area minus the product of the thickness and the total width of material that is removed to form the slot.

Specification for Structural Steel Buildings, Public Review Draft dated March 1, 2009

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
In determining the net area across plug or *slot welds*, the *weld metal* shall not be considered as adding to the net area.

For members without holes, the net area, A_n, is equal to the gross area, A_g.

User Note: Section J4.1(b) limits A_n to a maximum of $0.85A_g$ for splice plates with holes.

B5. FABRICATION, ERECTION AND QUALITY CONTROL

Shop drawings, fabrication, shop painting, erection and *quality control* shall meet the requirements stipulated in Chapter M, Fabrication, Erection and Quality Control.

B6. EVALUATION OF EXISTING STRUCTURES

Provisions for the evaluation of existing structures are presented in Appendix 5, Evaluation of Existing Structures.
CHAPTER C
DESIGN FOR STABILITY

This chapter addresses requirements for the design of structures for stability. The direct analysis method is presented herein; alternative methods are presented in Appendix 7.

The chapter is organized as follows:

C1. General Stability Requirements
C2. Calculation of Required Strengths
C3. Calculation of Available Strengths

C1. GENERAL STABILITY REQUIREMENTS

Stability shall be provided for the structure as a whole and for each of its elements. The effects of all of the following on the stability of the structure and its elements shall be considered: (1) flexural, shear, and axial member deformations, and all other deformations that contribute to displacements of the structure; (2) second-order effects (both $P-\Delta$ and $P-\delta$ effects); (3) geometric imperfections; (4) stiffness reductions due to inelasticity; and (5) uncertainty in stiffness and strength. All load-dependent effects shall be calculated at a level of loading corresponding to LRFD load combinations or 1.6 times ASD load combinations.

Any rational method of design for stability that considers all of the listed effects is permitted.

User Note: The term “design” as used in these provisions is the combination of analysis to determine the required strengths of components and the proportioning of components to have adequate available strength.

The direct analysis method, which consists of the calculation of required strengths in accordance with Section C2 and the calculation of available strengths in accordance with Section C3, is permitted for all structures. The effective length method and the first-order analysis method, defined in Appendix 7, are permitted as alternatives to the direct analysis method for structures that satisfy the constraints specified in that appendix.

User Note: See Commentary Section C1 and Table C-C1.1 for explanation of how requirements (1) through (5) of Section C1 are satisfied in the direct analysis method, the effective length method and the first-order analysis method.

For structures designed by inelastic analysis, the provisions of Appendix 1
shall be satisfied.

C2. CALCULATION OF REQUIRED STRENGTHS

The required strengths of components of the structure shall be determined from an analysis conforming to Section C2.1. The analysis shall include consideration of initial imperfections in accordance with Section C2.2 and adjustments to stiffness in accordance with Section C2.3.

1. General Analysis Requirements

The analysis of the structure shall conform to the following requirements:

(1) The analysis shall be a second-order analysis that considers both P-\(\Delta\) and P-\(\delta\) effects, except that it is permissible to neglect the effect of P-\(\delta\) on the response of the structure when it can be shown that the resulting error would be insignificant. Use of the approximate method of second-order analysis provided in Appendix 8 is permitted as an alternative to a rigorous second-order analysis.

User Note: It is necessary in all cases to consider the effects of P-\(\delta\) on individual members subject to compression and flexure. However, a P-\(\Delta\)-only second-order analysis (one that neglects the effects of P-\(\delta\) on the response of the structure) would result in little error (typically less than 3% error in lateral displacements) and should be acceptable for typical building structures if the ratio of second-order drift to first-order drift is less than 1.5 and no more than one-third of the total gravity load on the building is on columns that are part of moment-resisting frames in the direction of translation being considered.

(2) The analysis shall consider flexural, shear, and axial member deformations, and all other component and connection deformations that contribute to displacements of the structure. The analysis shall incorporate reductions in all stiffnesses that are considered to contribute to the stability of the structure, as specified in Section C2.3.

(3) The analysis shall consider all gravity and other applied loads that may influence the stability of the structure.

User Note: It is important to include in the analysis all gravity loads, including loads on leaning columns and other elements that are not part of the lateral load-resisting system.

(4) For design by LRFD, the second-order analysis shall be carried out under LRFD load combinations. For design by ASD, the second-order analysis shall be carried out under 1.6 times the ASD load combinations, and the results shall be divided by 1.6 to obtain the...
required strengths of components.

2. Consideration of Initial Imperfections

The effect of initial imperfections on the stability of the structure shall be taken into account either by direct modeling of imperfections in the analysis as specified in Section C2.2a or by the application of notional loads as specified in Section C2.2b.

User Note: The imperfections considered in this section are imperfections in the locations of points of intersection of members. In typical building structures, the important imperfection of this type is the out-of-plumbness of columns. Initial out-of-straightness of individual members is not addressed in this section; it is accounted for in the compression member design provisions of Chapter E and need not be considered explicitly in the analysis as long as it is within the limits specified in the Code of Standard Practice.

2a. Direct Modeling of Imperfections

In all cases, it is permissible to account for the effect of initial imperfections by including the imperfections directly in the analysis. The structure shall be analyzed with points of intersection of members displaced from their nominal locations. The magnitude of the initial displacements shall be the maximum amount considered in the design; the pattern of initial displacements shall be such that it provides the greatest destabilizing effect.

User Note: Initial displacements similar in configuration to both displacements due to loading and anticipated buckling modes should be considered in the modeling of imperfections. The magnitude of the initial displacements should be based on permissible construction tolerances, as specified in the Code of Standard Practice or other governing requirements, or on actual imperfections if known.

In the analysis of structures that support gravity loads primarily through nominally-vertical columns, walls, or frames, where the ratio of maximum second-order drift to maximum first-order drift (both determined for LRFD load combinations or 1.6 times ASD load combinations, with stiffnesses adjusted as specified in Section C2.3) in all stories is equal to or less than 1.7, it is permissible to include initial imperfections only in the analysis for gravity-only load combinations and not in the analysis for load combinations that include applied lateral loads.

2b. Use of Notional Loads to Represent Imperfections

For structures that support gravity loads primarily through nominally-vertical columns, walls, or frames, it is permissible to use notional loads to
represent the effects of initial imperfections in accordance with the requirements of this section. The notional load shall be applied to a model of the structure based on its nominal geometry.

User Note: The notional load concept is applicable to all types of structures, but the specific requirements in C2.2b(1) through C2.2b(4) are applicable only for the particular class of structure identified above.

(1) **Notional loads** shall be applied as *lateral loads* at all levels. The *notional loads* shall be additive to other *lateral loads* and shall be applied in all *load combinations*, except as indicated in (4), below. The magnitude of the *notional loads* shall be:

\[N_i = 0.002Y_i \]

where

- \(N_i \) = *notional load* applied at level \(i \), kips (N)
- \(Y_i \) = *gravity load* applied at level \(i \) from the *LRFD load combination* or 1.6 times the *ASD load combination*, as applicable, kips (N)

User Note: The notional loads can lead to additional (generally small) fictitious base shears in the structure. The correct horizontal reactions at the foundation may be obtained by applying an additional horizontal force at the base of the structure, equal and opposite in direction to the sum of all notional loads, distributed among vertical load-carrying elements in the same proportion as the gravity load supported by those elements.

(2) The *notional load* at any level, \(N_i \), shall be distributed over that level in the same manner as the *gravity load* at the level. The *notional loads* shall be applied in the direction that provides the greatest destabilizing effect.

User Note: For most building structures, the requirement regarding notional load direction may be satisfied as follows: For load combinations that do not include lateral loading, consider two alternative orthogonal directions of notional load application, in a positive and a negative sense in each of the two directions, in the same direction at all levels; for load combinations that include lateral loading, apply all notional loads in the direction of the resultant of all lateral loads in the combination.

(3) The *notional load* coefficient of 0.002 in Equation C2-1 is based on a nominal initial story out-of-plumbness ratio of 1/500. Where the use of a different maximum out-of-plumbness is justified, it is permissible to adjust the notional load coefficient proportionally.
(4) For structures in which the ratio of maximum second-order drift to
maximum first-order drift (both determined for LRFD load combina-
tions or 1.6 times ASD load combinations, with stiffnesses adjusted
as specified in Section C2.3) in all stories is equal to or less than 1.7,
it is permissible to apply the notional load, \(N_0 \), only in gravity-only
load combinations and not in combination that include other lateral
loads.

User Note: The specified drift ratio threshold of 1.7 is based on
analyses using reduced stiffnesses. If the drift ratio is determined
from analyses using nominal, unreduced stiffnesses, the equivalent
drift ratio is 1.5.

3. Adjustments to Stiffness

The analysis of the structure to determine the required strengths of
components shall use reduced stiffnesses, as follows:

(1) A factor of 0.8 shall be applied to all stiffnesses that are considered
to contribute to the stability of the structure. It is permissible to ap-
ply this reduction factor to all stiffnesses in the structure.

User Note: Applying the stiffness reduction to some members and
not others can, in some cases, result in artificial distortion of the
structure under load and possible unintended redistribution of forces.
This can be avoided by applying the reduction to all members, in-
cluding those that do not contribute to the stability of the structure.

(2) An additional factor, \(\tau_b \), shall be applied to the flexural stiffnesses of
all members whose flexural stiffnesses are considered to contribute
to the stability of the structure.

(a) When \(\alpha P_r/P_y \leq 0.5 \)

\[
\tau_b = 1.0 \quad \text{(C3-1a)}
\]

(b) When \(\alpha P_r/P_y > 0.5 \)

\[
\tau_b = 4(\alpha P_r/P_y)[1-(\alpha P_r/P_y)] \quad \text{(C3-1b)}
\]

where

\[
\alpha = 1.0 \text{ (LRFD)} \quad \alpha = 1.6 \text{ (ASD)}
\]
\[P_r = \text{required axial compressive strength under LRFD or ASD load combinations, kips (N)} \]
\[P_y = \text{axial yield strength (= } F_{yA}, \text{ kips (N)} \]

User Note: Taken together, sections (1) and (2) require the use of 0.8 \(EA \) and 0.8 \(\tau_b EI \) for structural steel members in the analysis instead of \(EA \) and \(EI \).

(3) In structures to which Section C2.2b is applicable, in lieu of using \(\tau_b < 1.0 \) where \(\alpha P_r/P_y > 0.5 \), it is permissible to use \(\tau_b = 1.0 \) for all members if a notional load of 0.001\(Y_i \) (where \(Y_i \) is as defined in Section C2.2b(1)) is applied at all levels, in the direction specified in Section C2.2b(2), in all load combinations. These notional loads shall be added to those, if any, used to account for imperfections and shall not be subject to Section C2.2b(4).

(4) Where components comprised of materials other than structural steel are considered to contribute to the stability of the structure and the governing codes and specifications for the other materials require greater reductions in stiffness, such greater stiffness reductions shall be applied to those components.

C3. CALCULATION OF AVAILABLE STRENGTHS

When required strengths have been determined in accordance with Section C2, the available strengths of members and connections shall be calculated in accordance with the provisions of Chapters D, E, F, G, H, I, J and K, as applicable, with no further consideration of overall structure stability. The effective length factor, \(K \), of all members shall be taken as unity unless a smaller value can be justified by rational analysis.

Bracing intended to define the unbraced lengths of members shall have sufficient stiffness and strength to control member movement at the braced points.

User Note: Methods of satisfying the bracing requirement are provided in Appendix 6. The requirements of Appendix 6 are not applicable to bracing that is included in the analysis of the overall structure as part of the overall load-resisting system.
CHAPTER D
DESIGN OF MEMBERS FOR TENSION

This chapter applies to members subject to axial tension caused by static forces acting through the centroidal axis.

The chapter is organized as follows:

D1. Slenderness Limitations
D2. Tensile Strength
D3. Effective Net Area
D4. Built-Up Members
D5. Pin-Connected Members
D6. Eyebars

User Note: For cases not included in this chapter the following sections apply:

• B3.10 Members subject to fatigue.
• Chapter H Members subject to combined axial tension and flexure.
• J3. Threaded rods.
• J4.1 Connecting elements in tension.
• J4.3 Block shear rupture strength at end connections of tension members.

D1. SLENDERNESS LIMITATIONS

There is no maximum slenderness limit for members in tension.

User Note: For members designed on the basis of tension, the slenderness ratio L/r preferably should not exceed 300. This suggestion does not apply to rods or hangers in tension.

D2. TENSILE STRENGTH

The design tensile strength, \(\phi P_n \), and the allowable tensile strength, \(P_n/\Omega_t \), of tension members shall be the lower value obtained according to the limit states of tensile yielding in the gross section and tensile rupture in the net section.

(a) For tensile yielding in the gross section:

\[
P_n = F_y A_g \quad \phi_t = 0.90 \text{ (LRFD)} \quad \Omega_t = 1.67 \text{ (ASD)}
\]

(b) For tensile rupture in the net section:

\[
P_n = F_u A_e \quad \phi_t = 0.75 \text{ (LRFD)} \quad \Omega_t = 2.00 \text{ (ASD)}
\]

where

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
When members without holes are fully connected by welds, the effective net area used in Equation D2-2 shall be as defined in Section D3. When holes are present in a member with welded end connections, or at the welded connection in the case of plug or slot welds, the effective net area through the holes shall be used in Equation D2-2.

D3. EFFECTIVE NET AREA

The gross area, A_g, and net area, A_n, of tension members shall be determined in accordance with the provisions of Section B4.3.

The effective net area of tension members shall be determined as follows:

$$ A_e = A_n U $$

where U, the shear lag factor, is determined as shown in Table D3.1.

For open cross-sections such as W, M, S, C, or HP shapes, WTs, STs, and single and double angles, the shear lag factor, U, need not be less than the ratio of the gross area of the connected element(s) to the member gross area. This provision does not apply to closed sections, such as HSS sections, nor to plates.

User Note: For bolted splice plates $A_e = A_n \leq 0.85 A_g$, according to Section J4).
<table>
<thead>
<tr>
<th>Case</th>
<th>Description of Element</th>
<th>Shear Lag Factor, U</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>All tension members where the tension load is transmitted directly to each of cross-sectional elements by fasteners or welds. (except as in Cases 4, 5 and 6)</td>
<td>$U = 1.0$</td>
<td>——</td>
</tr>
<tr>
<td>2</td>
<td>All tension members, except plates and HSS, where the tension load is transmitted to some but not all of the cross-sectional elements by fasteners or longitudinal welds or by longitudinal welds in combination with transverse welds. (Alternatively, for W, M, S and HP, Case 7 may be used. For angles, Case 8 may be used)</td>
<td>$U = 1 - \frac{x}{l}$</td>
<td>——</td>
</tr>
<tr>
<td>3</td>
<td>All tension members where the tension load is transmitted only by transverse welds to some but not all of the cross-sectional elements.</td>
<td>$U = 1.0$ and $A_n =$ area of the directly connected elements</td>
<td>——</td>
</tr>
</tbody>
</table>
| 4 | Plates where the tension load is transmitted by longitudinal welds only. | $l \geq 2w ... U = 1.0$
$2w > l \geq 1.5w ... U = 0.87$
$1.5w > l \geq w ... U = 0.75$ | —— |
| 5 | Round HSS with a single concentric gusset plate | $l \geq 1.3D \ldots U = 1.0$
$D \leq 1.3D \ldots U = 1 - \frac{x}{l}$
$\bar{x} = D/\pi$ | —— |
| 6 | Rectangular HSS with a single concentric gusset plate | $l \geq B \ldots U = 1 - \frac{x}{l}$
$\bar{x} = \frac{B^2 + 2BH}{4(B + H)}$ | —— |
| | with two side gusset plates | $l \geq H \ldots U = 1 - \frac{x}{l}$
$\bar{x} = \frac{B^2}{4(B + H)}$ | —— |
| 7 | W, M, S or HP Shapes or Tees cut from these shapes. (If U is calculated per Case 2, the larger value is permitted to be used) | $b_f \geq 2/3 \ d \ldots U = 0.90$
$b_f < 2/3 \ d \ldots U = 0.85$ | —— |
| | with flange connected with 3 or more fasteners per line in direction of loading | $b_f \geq 2/3 \ d \ldots U = 0.90$
$b_f < 2/3 \ d \ldots U = 0.85$ | —— |
| | with web connected with 4 or more fasteners per line in the direction of loading | $U = 0.70$ | —— |
| 8 | Single and double angles (If U is calculated per Case 2, the larger value is permitted to be used) | $U = 0.80$ | —— |
| | with 4 or more fasteners per line in direction of loading | $U = 0.80$ | —— |
| | with 3 fasteners per line in the direction of loading (with fewer than 3 fasteners per line in the direction of loading, use Case 2) | $U = 0.60$ | —— |

$I =$ length of connection, in. (mm); $w =$ plate width, in. (mm); $x =$ connection eccentricity, in. (mm); $B =$ overall width of rectangular HSS member, measured 90° to the plane of the connection, in. (mm); $H =$ overall height of rectangular HSS member, measured in the plane of the connection, in. (mm)
D4. BUILT-UP MEMBERS

For limitations on the longitudinal spacing of connectors between elements in continuous contact consisting of a plate and a shape or two plates, see Section J3.5.

Either perforated cover plates or tie plates without lacing are permitted to be used on the open sides of built-up tension members. Tie plates shall have a length not less than two-thirds the distance between the lines of welds or fasteners connecting them to the components of the member. The thickness of such tie plates shall not be less than one-fiftieth of the distance between these lines. The longitudinal spacing of intermittent welds or fasteners at tie plates shall not exceed 6 in. (150 mm).

User Note: The longitudinal spacing of connectors between components should preferably limit the slenderness ratio in any component between the connectors to 300.

D5. PIN-CONNECTED MEMBERS

1. Tensile Strength

The design tensile strength, ϕP_n, and the allowable tensile strength, P_n/Ω, of pin-connected members, shall be the lower value determined according to the limit states of tensile rupture, shear rupture, bearing, and yielding.

(a) For tensile rupture on the net effective area:

$$ P_n = 2tb_c F_u $$

$$ \phi_t = 0.75 \text{ (LRFD)} \quad \Omega_t = 2.00 \text{ (ASD)} $$

(b) For shear rupture on the effective area:

$$ P_n = 0.6F_uA_{sf} $$

$$ \phi_{sf} = 0.75 \text{ (LRFD)} \quad \Omega_{sf} = 2.00 \text{ (ASD)} $$

where

$A_{sf} =$ area on the shear failure path $= 2t(a + d / 2)$, in.2 (mm2)

$a =$ shortest distance from edge of the pin hole to the edge of the member measured parallel to the direction of the force, in. (mm)

$b_c =$ $2t + 0.63$, in. (= $2t + 16$, mm), but not more than the actual distance from the edge of the hole to the edge of the part measured in the direction normal to the applied force, in. (mm)
2. Dimensional Requirements

The pin hole shall be located midway between the edges of the member in the direction normal to the applied force. When the pin is expected to provide for relative movement between connected parts while under full load, the diameter of the pin hole shall not be more than $\frac{1}{2}$ in. (1 mm) greater than the diameter of the pin.

The width of the plate at the pin hole shall not be less than $2b_e + d$ and the minimum extension, a, beyond the bearing end of the pin hole, parallel to the axis of the member, shall not be less than $1.33 \times b_e$.

The corners beyond the pin hole are permitted to be cut at 45° to the axis of the member, provided the net area beyond the pin hole, on a plane perpendicular to the cut, is not less than that required beyond the pin hole parallel to the axis of the member.

D6. EYEBARS

1. Tensile Strength

The available tensile strength of eyebars shall be determined in accordance with Section D2, with A_e taken as the cross-sectional area of the body.

For calculation purposes, the width of the body of the eyebars shall not exceed eight times its thickness.

2. Dimensional Requirements

Eyebars shall be of uniform thickness, without reinforcement at the pin holes, and have circular heads with the periphery concentric with the pin hole.

The radius of transition between the circular head and the eyebar body shall not be less than the head diameter.

The pin diameter shall not be less than seven-eighths times the eyebar body width, and the pin hole diameter shall not be more than $\frac{1}{2}$ in. (1 mm) greater than the pin diameter.

For steels having F_y greater than 70 ksi (485 MPa), the hole diameter shall not exceed five times the plate thickness, and the width of the pin...
eyebar body shall be reduced accordingly.

A thickness of less than ½ in. (13 mm) is permissible only if external nuts are provided to tighten pin plates and filler plates into snug contact. The width from the hole edge to the plate edge perpendicular to the direction of applied load shall be greater than two-thirds and, for the purpose of calculation, not more than three-fourths times the eyebar body width.
CHAPTER E
DESIGN OF MEMBERS FOR COMPRESSION

This chapter addresses members subject to axial compression through the centroidal axis. The chapter is organized as follows:

- E2. Slenderness Limitations and Effective Length
- E3. Flexural Buckling of Members without Slender Elements
- E4. Torsional and Flexural-Torsional Buckling of Members without Slender Elements
- E5. Single Angle Compression Members
- E6. Built-Up Members
- E7. Members with Slender Elements

User Note: For cases not included in this chapter the following sections apply:

- H1. – H3. Members subject to combined axial compression and flexure.
- H4. Members subject to axial compression and torsion.
- J4.4 Compressive strength of connecting elements.
- I2. Composite axially loaded members.

E1. GENERAL PROVISIONS

The design compressive strength, ϕP_n, and the allowable compressive strength, P_n/Ω_c, are determined as follows.

The nominal compressive strength, P_n, shall be the lowest value obtained based on the applicable limit states of flexural buckling, torsional buckling and flexural-torsional buckling.

$$\phi_c = 0.90 \text{ (LRFD)} \quad \Omega_c = 1.67 \text{ (ASD)}$$
Table User Note E1.1
Selection Table for the Application of Chapter E Sections

<table>
<thead>
<tr>
<th>Cross Section</th>
<th>Without Slender Elements</th>
<th>With Slender Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sections in Chapter E</td>
<td>Limit States</td>
</tr>
<tr>
<td></td>
<td>E3</td>
<td>E7</td>
</tr>
<tr>
<td></td>
<td>E4</td>
<td>FTB</td>
</tr>
<tr>
<td></td>
<td>E6</td>
<td>FTB</td>
</tr>
<tr>
<td></td>
<td>E5</td>
<td>FTB</td>
</tr>
<tr>
<td></td>
<td>E3</td>
<td>FB</td>
</tr>
<tr>
<td></td>
<td>E4</td>
<td></td>
</tr>
</tbody>
</table>

FB = flexural buckling, TB = torsional buckling, FTB = flexural-torsional buckling, LB = local buckling

E2. EFFECTIVE LENGTH

The effective length factor, \(K \), for calculation of column slenderness, \(KL/r \), shall be determined in accordance with Chapter C or Appendix 7,

Specification for Structural Steel Buildings, Public Review Draft dated March 1, 2009
American Institute of Steel Construction
where
\[L = \text{laterally unbraced length of the member, in. (mm)} \]
\[r = \text{radius of gyration, in. (mm)} \]

User Note: For members designed on the basis of compression, the effective slenderness ratio \(KL/r \) preferably should not exceed 200.

E3. FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER ELEMENTS

This section applies to compression members without slender elements, as defined in Section B4.1 for elements in uniform compression.

User Note: When the torsional unbraced length is larger than the lateral unbraced length, Section E4 may control the design of wide flange and similarly shaped columns.

The nominal compressive strength, \(P_n \), shall be determined based on the limit state of flexural buckling.

\[P_n = F_{cr} A_g \quad \text{(E3-1)} \]

The critical stress, \(F_{cr} \), is determined as follows:

(a) When \(\frac{KL}{r} \leq 4.71 \sqrt{\frac{E}{F_y}} \) (or \(\frac{F_y}{F_e} \leq 2.25 \))

\[F_{cr} = \begin{cases}
F_y \\
0.658 \frac{F_y}{F_e}
\end{cases} \quad \text{(E3-2)} \]

(b) When \(\frac{KL}{r} > 4.71 \sqrt{\frac{E}{F_y}} \) (or \(\frac{F_y}{F_e} > 2.25 \))

\[F_{cr} = 0.877 F_e \quad \text{(E3-3)} \]

where

\(F_e = \text{elastic buckling stress determined according to Equation E3-4, as specified in Appendix Section 7.2.3(b), or through an elastic buckling analysis, as applicable, ksi (MPa)} \)

\[F_e = \frac{\pi^2 E}{\left(\frac{KL}{r} \right)^2} \quad \text{(E3-4)} \]

User Note: The two equations for calculating the limits and applicability of Sections E3(a) and E3(b), one based on \(KL/r \) and one based on \(F_y/F_e \), provide the...
same result.

E4. TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING OF MEMBERS WITHOUT SLENDER ELEMENTS

This section applies to singly symmetric and unsymmetric members and certain doubly symmetric members, such as cruciform or built-up columns without slender elements, as defined in Section B4.1 for elements in uniform compression. In addition, this section applies to all doubly symmetric members without slender elements when the torsional unbraced length exceeds the lateral unbraced length. These provisions are not required for single angles with \(b/t \leq 20 \), which are covered in Section E5.

The nominal compressive strength, \(P_n \), shall be determined based on the limit states of flexural-torsional and torsional buckling, as follows:

\[
P_n = F_{cr} A_g
\]

The critical stress, \(F_{cr} \), is determined as follows:

(a) For double angle and tee-shaped compression members:

\[
F_{cr} = \left(\frac{F_{cr_y} + F_{cr_z}}{2H} \right) \left[1 - \sqrt{1 - \frac{4F_{cr_y}F_{cr_z} H}{(F_{cr_y} + F_{cr_z})^2}} \right]
\]

where \(F_{cr_y} \) is taken as \(F_{cr} \) from Equation E3-2 or E3-3, for flexural buckling about the \(y \)-axis of symmetry and \(\frac{KL}{r} = \frac{K_y L}{r_y} \) for T-shaped compression members and \(\frac{KL}{r} = (\frac{KL}{r})_m \) from Section E6 for double angle compression members, and

\[
F_{cr_z} = \frac{GJ}{A_g f_y^2}
\]

(b) For all other cases, \(F_{cr} \) shall be determined according to Equation E3-2 or E3-3, using the torsional or flexural-torsional elastic buckling stress, \(F_e \), determined as follows:

(i) For doubly symmetric members:

\[
F_e = \left[\frac{\pi^2 EC_w}{(K_y L)^2} + GJ \right] \frac{1}{I_x + I_y}
\]

(ii) For singly symmetric members where \(y \) is the axis of symmetry:

\[
F_e = \left(\frac{F_{cr_y} + F_{cr_z}}{2H} \right) \left[1 - \sqrt{1 - \frac{4F_{cr_y}F_{cr_z} H}{(F_{cr_y} + F_{cr_z})^2}} \right]
\]
For unsymmetric members, F_e is the lowest root of the cubic equation:

$$(F_e - F_{ex})(F_e - F_{ey})(F_e - F_{ez}) - F_e^2 (F_e - F_{ex}) \frac{x_o}{r_o}^2 - F_e^2 (F_e - F_{ez}) \frac{y_o}{r_o}^2 = 0$$

(E4-6)

where

A_g = gross area of member, in.2 (mm2)

C_w = warping constant, in.6 (mm6)

$$F_{ex} = \frac{\pi^2 E}{(K_e L)^2/r_x^2}$$

(E4-7)

$$F_{ey} = \frac{\pi^2 E}{(K_e L)^2/r_y^2}$$

(E4-8)

$$F_{ez} = \frac{\pi^2 E C_w + GI}{A_g F_o^2}$$

(E4-9)

G = shear modulus of elasticity of steel = 11,200 ksi

(77 200 MPa)

$$H = 1 - \frac{x_o^2 + y_o^2}{r_o^2}$$

(E4-10)

I_x, I_y = moment of inertia about the principal axes, in.4 (mm4)

J = torsional constant, in.4 (mm4)

K_e = *effective length factor* for flexural buckling about x-axis

K_y = effective length factor for flexural buckling about y-axis

K_z = effective length factor for torsional buckling

x_o, y_o = coordinates of shear center with respect to the centroid, in. (mm)

r_o = polar radius of gyration about the shear center, in. (mm)

$$r_o^2 = x_o^2 + y_o^2 + \frac{I_x + I_y}{A_g}$$

(E4-11)

r_x = radius of gyration about x-axis, in. (mm)

r_y = radius of gyration about y-axis, in. (mm)

User Note: For doubly symmetric I-shaped sections C_w may be taken as $I_j h_o^2/4$, where h_o is the distance between flange centroids, in lieu of a more precise analysis. For tees and double angles, omit term with C_w when computing F_{ez} and take x_o as 0.

Specification for Structural Steel Buildings, Public Review Draft dated March 1, 2009

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
E5. SINGLE ANGLE COMPRESSION MEMBERS

The nominal compressive strength, P_{ns}, of single angle members shall be determined in accordance with Section E3 or Section E7, as appropriate, for axially loaded members. Members meeting the criteria imposed in Section E5(a) or E5(b) are permitted to be designed as axially loaded members using the specified effective slenderness ratio, KL/r.

The effects of eccentricity on single angle members are permitted to be neglected when evaluated as axially loaded compression members using one of the effective slenderness ratios specified in Section E5(a) or E5(b), provided that:

1. members are loaded at the ends in compression through the same one leg;
2. members are attached by welding or by connections with a minimum of two bolts; and
3. there are no intermediate transverse loads.

Single angle members with different end conditions from those described in Section E5(a) or (b), with the ratio of long leg width to short leg width greater than 1.7 or with transverse loading shall be evaluated for combined axial load and flexure using the provisions of Chapter H.

(a) For equal-leg angles or unequal-leg angles connected through the longer leg that are individual members or are web members of planar trusses with adjacent web members attached to the same side of the gusset plate or chord:

(i) When $\frac{L}{r_x} \leq 80$:

$$KL = 72 + 0.75 \frac{L}{r_x}$$

(E5-1)

(ii) When $\frac{L}{r_x} > 80$:

$$KL = 32 + 1.25 \frac{L}{r_x} \leq 200$$

(E5-2)

For unequal-leg angles with leg length ratios less than 1.7 and connected through the shorter leg, KL/r from Equations E5-1 and E5-2 shall be increased by adding $4[(b_b/b_s)^2 - 1]$, but KL/r of the members shall not be taken as less than $0.95L/r_z$.

(b) For equal-leg angles or unequal-leg angles connected through the longer leg that are web members of box or space trusses with adjacent web members attached to the same side of the gusset plate or chord:

(i) When $\frac{L}{r_x} \leq 75$:

$$KL = 60 + 0.8 \frac{L}{r_x}$$

(E5-3)

(ii) When $\frac{L}{r_x} > 75$:

$$KL = 45 + \frac{L}{r_x} \leq 200$$

(E5-4)

For unequal-leg angles with leg length ratios less than 1.7 and connected...
through the shorter leg, KL/r from Equations E5-3 and E5-4 shall be increased by adding $6[(b_l/b_s)^2-1]$, but KL/r of the member shall not be taken as less than $0.82L/r_z$.

where

$L = \text{length of member between work points at truss chord centerlines, in. (mm)}$

$b_l = \text{length of longer leg of angle, in. (mm)}$

$b_s = \text{length of shorter leg of angle, in. (mm)}$

$r_x = \text{radius of gyration about geometric axis parallel to connected leg, in. (mm)}$

$r_z = \text{radius of gyration about the minor principal axis, in. (mm)}$

E6. BUILT-UP MEMBERS

1. Compressive Strength

This section applies to built-up members composed of two shapes either (a) interconnected by bolts or welds, or (b) with at least one open side interconnected by perforated cover plates or lacing with tie plates. The end connection shall be welded or connected by means of pretensioned bolts with Class A or B faying surfaces.

User Note: It is acceptable to design a bolted end connection of a built-up compression member with the bolts in shear as a non-slip-critical connection; however, the bolts must be pretensioned. The requirement for Class A or B faying surfaces is not intended for the resistance of the axial force in the built-up member, but rather to prevent relative movement between the components at the end as the built-up member takes a curved shape.

The nominal compressive strength of built-up members composed of two shapes that are interconnected by bolts or welds shall be determined in accordance with Sections E3, E4 or E7 subject to the following modification. In lieu of more accurate analysis, if the buckling mode involves relative deformations that produce shear forces in the connectors between individual shapes, KL / r is replaced by $(KL/r)_m$ determined as follows:

(a) For intermediate connectors that are bolted snug-tight:

$$\left(\frac{KL}{r} \right)_m = \sqrt{\left(\frac{KL}{r} \right)^2_o + \left(\frac{a}{\eta} \right)^2} \quad \text{(E6-1)}$$

(b) For intermediate connectors that are welded or are connected by means of pretensioned bolts:

(i) When $\left(\frac{a}{\eta} \right) \leq 40$

$$\left(\frac{KL}{r} \right)_m = \left(\frac{KL}{r} \right)_o \quad \text{(E6-2a)}$$
(ii) When \(\frac{a}{r_i} > 40 \)

\[
\left(\frac{KL}{r_m} \right)_m = \sqrt{\left(\frac{KL}{r_o} \right)_a^2 + \left(\frac{K_i a}{r_i} \right)^2}
\]

\((E6-2b) \)

where

\[
\left(\frac{KL}{r_m} \right)_m = \text{modified slenderness ratio of built-up member}
\]

\[
\left(\frac{KL}{r_o} \right)_a = \text{effective column slenderness ratio of built-up member acting as a unit in the buckling direction being considered}
\]

\(K_i = 0.50 \) for angles back-to-back

\(= 0.75 \) for channels back-to-back

\(= 0.86 \) for all other cases

\(a = \text{distance between connectors, in. (mm)} \)

\(r_i = \text{minimum radius of gyration of individual component, in. (mm)} \)

2. Dimensional Requirements

Individual components of compression members composed of two or more shapes shall be connected to one another at intervals, \(a \), such that the effective slenderness ratio \(K a / r_i \) of each of the component shapes, between the fasteners, does not exceed three-fourths times the governing slenderness ratio of the built-up member. The least radius of gyration, \(r_i \), shall be used in computing the slenderness ratio of each component part.

At the ends of built-up compression members bearing on base plates or finished surfaces, all components in contact with one another shall be connected by a weld having a length not less than the maximum width of the member or by bolts spaced longitudinally not more than four diameters apart for a distance equal to 1½ times the maximum width of the member.

Along the length of built-up compression members between the end connections required above, longitudinal spacing for intermittent welds or bolts shall be adequate to provide for the transfer of the required strength. For limitations on the longitudinal spacing of fasteners between elements in continuous contact consisting of a plate and a shape or two plates, see Section J3.5. Where a component of a built-up compression member consists of an outside plate, the maximum spacing shall not exceed the thickness of the thinner outside plate times 0.75\(\sqrt{E / F_y} \), nor 12 in. (305 mm), when intermittent welds are provided along the edges of the components or when fasteners are provided on all gage lines at each section. When fasteners are staggered, the maximum spacing of fasteners on each gage line shall not exceed the thickness of the thinner outside plate times 1.12\(\sqrt{E / F_y} \), nor 18 in. (460 mm).
Open sides of compression members built up from plates or shapes shall be provided with continuous cover plates perforated with a succession of access holes. The unsupported width of such plates at access holes, as defined in Section B4.1, is assumed to contribute to the available strength provided the following requirements are met:

1. The width-thickness ratio shall conform to the limitations of Section B4.1.

User Note: It is conservative to use the limiting width/thickness ratio for Case 7 in Table B4.1 with the width, b, taken as the transverse distance between the nearest lines of fasteners. The net area of the plate is taken at the widest hole. In lieu of this approach, the limiting width thickness ratio may be determined through analysis.

2. The ratio of length (in direction of stress) to width of hole shall not exceed two.

3. The clear distance between holes in the direction of stress shall be not less than the transverse distance between nearest lines of connecting fasteners or welds.

4. The periphery of the holes at all points shall have a minimum radius of $1\frac{1}{2}$ in. (38 mm).

As an alternative to perforated cover plates, lacing with tie plates is permitted at each end and at intermediate points if the lacing is interrupted. Tie plates shall be as near the ends as practicable. In members providing available strength, the end tie plates shall have a length of not less than the distance between the lines of fasteners or welds connecting them to the components of the member. Intermediate tie plates shall have a length not less than one-half of this distance. The thickness of tie plates shall be not less than one-fiftieth of the distance between lines of welds or fasteners connecting them to the segments of the members. In welded construction, the welding on each line connecting a tie plate shall total not less than one-third the length of the plate. In bolted construction, the spacing in the direction of stress in tie plates shall be not more than six diameters and the tie plates shall be connected to each segment by at least three fasteners.

Lacing, including flat bars, angles, channels, or other shapes employed as lacing, shall be so spaced that the L/r ratio of the flange element included between their connections shall not exceed three-fourths times the governing slenderness ratio for the member as a whole. Lacing shall be proportioned to provide a shearing strength normal to the axis of the member equal to 2 percent of the available compressive strength of the member. The L/r ratio for lacing bars arranged in single systems shall not exceed 140. For double lacing this ratio shall not exceed 200. Double lacing bars shall be joined at the intersections. For lacing bars in compression, L is permitted to be taken as the unsupported length of the lacing bar between welds or fasteners connecting it to the components of the built-up member for single lacing, and 70% of that distance for double lacing.

User Note: The inclination of lacing bars to the axis of the member shall preferably be not less than 60° for single lacing and 45° for double lacing. When the distance between the lines of welds or fasteners in the flanges is more than 15 in. (380 mm), the lacing shall preferably be double or be made of angles.

For additional spacing requirements, see Section J3.5.
E7. MEMBERS WITH SLENDER ELEMENTS

This section applies to compression members with slender elements, as defined in Section B4.1 for elements in uniform compression.

The nominal compressive strength, P_n, shall be the lowest value based on the applicable limit states of flexural buckling, torsional buckling, and flexural-torsional buckling.

$$P_n = F_{cr}A_e$$ \hspace{1cm} (E7-1)

The critical stress, F_{cr}, shall be determined as follows:

(a) When $\frac{KL}{r} \leq 4.71 \sqrt{\frac{E}{QF_y}}$ (or $\frac{QF_y}{F_e} \leq 2.25$)

$$F_{cr} = Q \left[0.658 \frac{QF_y}{F_e} \right] F_y$$ \hspace{1cm} (E7-2)

(b) When $\frac{KL}{r} > 4.71 \sqrt{\frac{E}{QF_y}}$ (or $\frac{QF_y}{F_e} > 2.25$)

$$F_{cr} = 0.877F_e$$ \hspace{1cm} (E7-3)

where

- F_e = elastic buckling stress, calculated using Equations E3-4 and E4-4 for doubly symmetric members, Equations E3-4 and E4-5 for singly symmetric members, and Equation E4-6 for unsymmetric members, except for single angles where F_e is calculated using Equation E3-4.
- Q = net reduction factor accounting for all slender compression elements; $Q = 1.0$ for members without slender elements, as defined in Section B4.1, for elements in uniform compression
- Q_sQ_a for members with slender-element sections, as defined in Section B4.1, for elements in uniform compression

User Note: For cross sections composed of only unstiffened slender elements, $Q = Q_s (Q_a = 1.0)$. For cross sections composed of only stiffened slender elements, $Q = Q_s (Q_a = 1.0)$. For cross sections composed of both stiffened and unstiffened slender elements, $Q = Q_sQ_a$. For cross sections composed of multiple unstiffened slender elements, it is conservative to use the smaller Q_s from the more slender element in determining the member strength for pure compression.

1. Slender Unstiffened Elements, Q_s

The reduction factor Q_s for slender unstiffened elements is defined as follows:

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
(a) For flanges, angles, and plates projecting from rolled columns or other compression members:

(i) When $\frac{b}{t} \leq 0.56 \sqrt{\frac{E}{F_y}}$

\[Q_s = 1.0 \] (E7-4)

(ii) When $0.56 \sqrt{\frac{E}{F_y}} < \frac{b}{t} < 1.03 \sqrt{\frac{E}{F_y}}$

\[Q_s = 1.415 - 0.74 \left(\frac{b}{t} \right) \sqrt{\frac{F_y}{E}} \] (E7-5)

(iii) When $\frac{b}{t} \geq 1.03 \sqrt{\frac{E}{F_y}}$

\[Q_s = \frac{0.69E}{F_y \left(\frac{b}{t} \right)^2} \] (E7-6)

(b) For flanges, angles, and plates projecting from built-up columns or other compression members:

(i) When $\frac{b}{t} \leq 0.64 \sqrt{\frac{E k_c}{F_y}}$

\[Q_s = 1.0 \] (E7-7)

(ii) When $0.64 \sqrt{\frac{E k_c}{F_y}} < \frac{b}{t} \leq 1.17 \sqrt{\frac{E k_c}{F_y}}$

\[Q_s = 1.415 - 0.65 \left(\frac{b}{t} \right) \sqrt{\frac{F_y}{E k_c}} \] (E7-8)

(iii) When $\frac{b}{t} > 1.17 \sqrt{\frac{E k_c}{F_y}}$

\[Q_s = \frac{0.90E k_c}{F_y \left(\frac{b}{t} \right)^2} \] (E7-9)

where

\[k_c = \frac{4}{\sqrt{h/t}} \], and shall not be taken less than 0.35 nor greater than 0.76 for calculation purposes

(c) For single angles
(i) When \(\frac{b}{t} \leq 0.45 \sqrt{\frac{E}{F_y}} \)

\[Q_s = 1.0 \] \hspace{1cm} \text{(E7-10)}

(ii) When \(0.45 \sqrt{\frac{E}{F_y}} < \frac{b}{t} \leq 0.91 \sqrt{\frac{E}{F_y}} \)

\[Q_s = 1.34 - 0.76 \left(\frac{b}{t} \right) \sqrt{\frac{F_y}{E}} \] \hspace{1cm} \text{(E7-11)}

(iii) When \(\frac{b}{t} > 0.91 \sqrt{\frac{E}{F_y}} \)

\[Q_s = \frac{0.53E}{F_y \left(\frac{b}{t} \right)^2} \] \hspace{1cm} \text{(E7-12)}

where

\(b = \) full width of longest leg, in. (mm)

(d) For stems of tees

(i) When \(\frac{d}{t} \leq 0.75 \sqrt{\frac{E}{F_y}} \)

\[Q_s = 1.0 \] \hspace{1cm} \text{(E7-13)}

(ii) When \(0.75 \sqrt{\frac{E}{F_y}} < \frac{d}{t} \leq 1.03 \sqrt{\frac{E}{F_y}} \)

\[Q_s = 1.908 - 1.22 \left(\frac{d}{t} \right) \sqrt{\frac{F_y}{E}} \] \hspace{1cm} \text{(E7-14)}

(iii) When \(\frac{d}{t} > 1.03 \sqrt{\frac{E}{F_y}} \)

\[Q_s = \frac{0.69E}{F_y \left(\frac{d}{t} \right)^2} \] \hspace{1cm} \text{(E7-15)}

where

\(b = \) width of unstiffened compression element, as defined in Section B4.1, in. (mm)

\(d = \) full depth of tee, in. (mm)

\(t = \) thickness of element, in. (mm)

2. **Slender Stiffened Elements, \(Q_s \)**

The reduction factor, \(Q_s \), for slender stiffened elements is defined as follows:
\[Q_a = \frac{A_e}{A} \]
\(\text{(E7-16)} \)

where
\(A = \) total cross-sectional area of member, in.\(^2\) (mm\(^2\))
\(A_e = \) summation of the effective areas of the cross section based on the reduced effective width, \(b_e \), in.\(^2\) (mm\(^2\))

The reduced effective width, \(b_e \), is determined as follows:

(a) For uniformly compressed slender elements, with \(\frac{b}{t} \geq 1.49 \sqrt{\frac{E}{f}} \), except flanges of square and rectangular sections of uniform thickness:

\[
b_e = 1.92t \sqrt{\frac{E}{f}} \left[1 - \frac{0.34}{(b/t)} \sqrt{\frac{E}{f}} \right] \leq b
\]
\(\text{(E7-17)} \)

where
\(f \) is taken as \(F_{cr} \) with \(F_{cr} \) calculated based on \(Q = 1.0 \).

(b) For flanges of square and rectangular slender-element sections of uniform thickness with \(\frac{b}{t} \geq 1.40 \sqrt{\frac{E}{f}} \):

\[
b_e = 1.92t \sqrt{\frac{E}{f}} \left[1 - \frac{0.38}{(b/t)} \sqrt{\frac{E}{f}} \right] \leq b
\]
\(\text{(E7-18)} \)

where
\(f = \frac{P_n}{A_e} \)

User Note: In lieu of calculating \(f = \frac{P_n}{A_e} \), which requires iteration, \(f \) may be taken equal to \(F_y \). This will result in a slightly conservative estimate of column capacity.

(c) For axially loaded circular sections:

When \(0.11 \frac{E}{F_y} < \frac{D}{t} < 0.45 \frac{E}{F_y} \):

\[
Q = Q_a = \frac{0.038E}{F_y(D/t)} + \frac{2}{3}
\]
\(\text{(E7-19)} \)

where
\(D = \) outside diameter, in. (mm)
\(t = \) thickness of wall, in. (mm)
CHAPTER F
DESIGN OF MEMBERS FOR FLEXURE

This chapter applies to members subject to simple bending about one principal axis. For simple bending, the member is loaded in a plane parallel to a principal axis that passes through the shear center or is restrained against twisting at load points and supports.

The chapter is organized as follows:

F1. General Provisions
F2. Doubly Symmetric Compact I-Shaped Members and Channels Bent about Their Major Axis
F3. Doubly Symmetric I-Shaped Members with Compact Webs and Noncompact or Slender Flanges Bent about Their Major Axis
F4. Other I-Shaped Members with Compact or Noncompact Webs Bent about Their Major Axis
F5. Doubly Symmetric and Singly Symmetric I-Shaped Members with Slender Webs Bent about Their Major Axis
F6. I-Shaped Members and Channels Bent about Their Minor Axis
F7. Square and Rectangular HSS and Box-Shaped Members
F8. Round HSS
F9. Tees and Double Angles Loaded in the Plane of Symmetry
F10. Single Angles
F11. Rectangular Bars and Rounds
F12. Unsymmetrical Shapes
F13. Proportions of Beams and Girders

User Note: For cases not included in this chapter the following sections apply:
- H1–H3. Members subject to biaxial flexure or to combined flexure and axial force.
- H4. Members subject to flexure and torsion.
- Appendix 3. Members subject to fatigue.
- Chapter G. Design provisions for shear.
Table User Note F1.1

Selection Table for the Application of Chapter F Sections

<table>
<thead>
<tr>
<th>Section in Chapter F</th>
<th>Cross Section</th>
<th>Flange Slenderness</th>
<th>Web Slenderness</th>
<th>Limit States</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2</td>
<td></td>
<td>C</td>
<td>C</td>
<td>Y, LTB</td>
</tr>
<tr>
<td>F3</td>
<td></td>
<td>NC, S</td>
<td>C</td>
<td>LTB, FLB</td>
</tr>
<tr>
<td>F4</td>
<td></td>
<td>C, NC, S</td>
<td>C, NC</td>
<td>Y, LTB, FLB, TFY</td>
</tr>
<tr>
<td>F5</td>
<td></td>
<td>C, NC, S</td>
<td>S</td>
<td>Y, LTB, FLB, TFY</td>
</tr>
<tr>
<td>F6</td>
<td></td>
<td>C, NC, S</td>
<td>N/A</td>
<td>Y FLB</td>
</tr>
<tr>
<td>F7</td>
<td></td>
<td>C, NC, S</td>
<td>C, NC</td>
<td>Y, FLB, WLB</td>
</tr>
<tr>
<td>F8</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>Y, LB</td>
</tr>
<tr>
<td>F9</td>
<td></td>
<td>C, NC, S</td>
<td>N/A</td>
<td>Y, LTB, FLB</td>
</tr>
<tr>
<td>F10</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>Y, LTB, LLB</td>
</tr>
<tr>
<td>F11</td>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>Y, LTB</td>
</tr>
<tr>
<td>F12</td>
<td>Unsymmetrical shapes, other than single angles</td>
<td>N/A</td>
<td>N/A</td>
<td>All limit states</td>
</tr>
</tbody>
</table>

Y = yielding, LTB = lateral-torsional buckling, FLB = flange local buckling, WLB = web local buckling, TFY = tension flange yielding, LLB = leg local buckling, LB = local buckling, C = compact, NC = noncompact, S = slender
The design flexural strength, \(\phi_b M_n \), and the allowable flexural strength, \(M_n/\Omega_b \), shall be determined as follows:

1. For all provisions in this chapter

 \[\phi_b = 0.90 \text{ (LRFD)} \quad \Omega_b = 1.67 \text{ (ASD)} \]

 and the nominal flexural strength, \(M_n \), shall be determined according to Sections F2 through F13.

2. The provisions in this chapter are based on the assumption that points of support for beams and girders are restrained against rotation about their longitudinal axis.

3. For singly symmetric members in single curvature and all doubly symmetric members:

 \[C_b = \text{lateral-torsional buckling modification factor for nonuniform moment diagrams when both ends of the segment are braced} \]

 \[C_b = \frac{12.5 M_{\text{max}}}{2.5 M_{\text{max}} + 3 M_A + 4 M_B + 3 M_C} \quad (F1-1) \]

 where

 \(M_{\text{max}} \) = absolute value of maximum moment in the unbraced segment, kip-in. (N-mm)

 \(M_A \) = absolute value of moment at quarter point of the unbraced segment, kip-in. (N-mm)

 \(M_B \) = absolute value of moment at centerline of the unbraced segment, kip-in. (N-mm)

 \(M_C \) = absolute value of moment at three-quarter point of the unbraced segment, kip-in. (N-mm)

 For cantilevers or overhangs where the free end is unbraced, \(C_b = 1.0 \).

User Note: For doubly symmetric members with no transverse loading between brace points, Equation F1-1 reduces to 2.27 for the case of equal end moments of opposite sign and to 1.67 when one end moment equals zero. For singly symmetric members, a more detailed analysis for \(C_b \) is presented in the Commentary.

4. In singly symmetric members subject to reverse curvature bending, the lateral-torsional buckling strength shall be checked for both flanges. The available flexural strength shall be greater than or equal to the maximum required moment causing compression within the flange under consideration.
F2. DOUBLY SYMMETRIC COMPACT I-SHAPED MEMBERS AND CHANNELS BENT ABOUT THEIR MAJOR AXIS

This section applies to doubly symmetric I-shaped members and channels bent about their major axis, having compact webs and compact flanges as defined in Section B4.1 for flexure.

User Note: All current ASTM A6 W, S, M, C and MC shapes except W21x48, W14x99, W14x90, W12x65, W10X12, W8x31, W8x10, W6x15, W6x9, W6x8.5 and M4x6 have compact flanges for \(F_y = 50 \text{ ksi} \) (345 MPa); all current ASTM A6 W, S, M, HP, C and MC shapes have compact webs at \(F_y \leq 65 \text{ ksi} \) (450 MPa).

The nominal flexural strength, \(M_n \), shall be the lower value obtained according to the limit states of yielding (plastic moment) and lateral-torsional buckling.

1. Yielding

\[
M_n = M_p = F_y Z_x
\]

where
\[
F_y = \text{specified minimum yield stress of the type of steel being used, ksi (MPa)}
\]
\[
Z_x = \text{plastic section modulus about the x-axis, in.}^3 \text{ (mm}^3\text{)}
\]

2. Lateral-Torsional Buckling

(a) When \(L_b \leq L_p \), the limit state of lateral-torsional buckling does not apply.

(b) When \(L_p < L_b \leq L_r \)

\[
M_n = C_b \left[M_p - \left(M_p - 0.7 F_y S_x \right) \left(\frac{L_b - L_p}{L_r - L_p} \right) \right] \leq M_p
\]

(c) When \(L_b > L_r \)

\[
M_n = F_y S_x \leq M_p
\]

where

\[
L_b = \text{length between points that are either braced against lateral displacement of compression flange or braced against twist of the cross section, in. (mm)}
\]

\[
F_y = \frac{C_b \pi^2 E}{L_b^2} \sqrt{1 + 0.078 \frac{J c}{S_x h_p} \left(\frac{L_p}{r_x} \right)^2}
\]

and where

\[
E = \text{modulus of elasticity of steel} = 29,000 \text{ ksi} (200,000 \text{ MPa})
\]
\[
J = \text{torsional constant, in.}^4 \text{ (mm}^4\text{)}
\]
\[S_x = \text{elastic section modulus taken about the x-axis, in.}^3 (\text{mm}^3) \]

\[h_o = \text{distance between the flange centroids, in. (mm)} \]

User Note: The square root term in Equation F2-4 may be conservatively taken equal to 1.0.

The limiting lengths \(L_p \) and \(L_r \) are determined as follows:

\[L_p = 1.76r_s\sqrt{\frac{E}{F_y}} \quad \text{(F2-5)} \]

\[L_r = 1.95r_s\frac{E}{0.7F_y}\sqrt{\frac{Jc}{S_x h_o}} + \sqrt{\left(\frac{Jc}{S_x h_o}\right)^2 + 6.76\left(\frac{0.7F_y}{E}\right)^2} \quad \text{(F2-6)} \]

where

\[r_s^2 = \frac{\sqrt{I_s C_w}}{S_x} \quad \text{(F2-7)} \]

and the coefficient \(c \) is determined as follows:

(a) For doubly symmetric I-shapes: \(c = 1 \) \quad \text{(F2-8a)}

(b) For channels: \(c = \frac{h_o}{2}\sqrt{\frac{I_y}{C_w}} \) \quad \text{(F2-8b)}

User Note:

For doubly symmetric I-shapes with rectangular flanges, \(C_w = \frac{I_y h_o^2}{4} \) and thus Equation F2-7 becomes

\[r_s^2 = \frac{I_y h_o}{2S_x} \]

\(r_o \) may be approximated accurately and conservatively as the radius of gyration of the compression flange plus one-sixth of the web:

\[r_s = \frac{b_f}{\sqrt{12\left(1 + \frac{h_t w}{6 b_f t_f}\right)}} \]

F3. DOUBLY SYMMETRIC I-SHAPED MEMBERS WITH COMPACT WEBS AND NONCOMPACT OR SLENDER FLANGES BENT ABOUT THEIR MAJOR AXIS

This section applies to doubly symmetric I-shaped members bent about their major axis having compact webs and noncompact or slender flanges as defined in Section B4.1 for flexure.

User Note: The following shapes have noncompact flanges for
$F_y = 50 \text{ ksi (345 MPa)}$: W21x48, W14x99, W14x90, W12x65, W10x12, W8x31, W8x10, W6x15, W6x9, W6x8.5 and M4x6. All other ASTM A6 W, S, M, and HP shapes have compact flanges for $F_y \leq 50 \text{ ksi (345 MPa)}$.

The nominal flexural strength, M_n, shall be the lower value obtained according to the limit states of lateral-torsional buckling and compression flange local buckling.

1. Lateral-Torsional Buckling

For lateral-torsional buckling, the provisions of Section F2.2 shall apply.

2. Compression Flange Local Buckling

(a) For sections with noncompact flanges

$$M_n = M_p - (M_p - 0.7F_yS_e) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{cf} - \lambda_{pf}} \right) \quad (F3-1)$$

(b) For sections with slender flanges

$$M_n = \frac{0.9E_kc_S_e}{\lambda^2} \quad (F3-2)$$

where

$$\lambda = \frac{b_f}{2t_f}$$

λ_{pf} is the limiting slenderness for a compact flange, Table B4.1

λ_{cf} is the limiting slenderness for a noncompact flange, Table B4.1

$$k_c = \frac{4}{\sqrt{h/t_w}} \quad \text{and shall not be taken less than 0.35 nor greater than 0.76 for calculation purposes}$$

$h = \text{distance as defined in Section B4.1b, in.}$

F4. OTHER I-SHAPED MEMBERS WITH COMPACT OR NONCOMPACT WEBS BENT ABOUT THEIR MAJOR AXIS

This section applies to: (a) doubly symmetric I-shaped members bent about their major axis with noncompact webs; and (b) singly symmetric I-shaped members with webs attached to the mid-width of the flanges, bent about their major axis, with compact or noncompact webs, as defined in Section B4.1 for flexure.

User Note: I-shaped members for which this section is applicable may be designed conservatively using Section F5.
The nominal flexural strength, M_n, shall be the lowest value obtained according to the limit states of compression flange yielding, lateral-torsional buckling, compression flange local buckling and tension flange yielding.

1. **Compression Flange Yielding**

 $$M_n = R_{pc}M_{yc} = R_{pc}F_yS_{xc} \quad (F4-1)$$

2. **Lateral-Torsional Buckling**

 (a) When $L_o \leq L_p$, the limit state of lateral-torsional buckling does not apply.

 (b) When $L_o < L_p$,

 $$M_n = C_h \left[R_{pc} M_{yc} - \left(R_{pc} M_{pc} - F_y S_{xc} \right) \left(\frac{L_o - L_p}{L_p - L_o} \right) \right] \leq R_{pc} M_{yc} \quad (F4-2)$$

 (c) When $L_o > L_p$,

 $$M_n = F_{cr} S_{xc} \leq R_{pc} M_{yc} \quad (F4-3)$$

 where

 $M_{yc} = \text{yield moment in the compression flange}$

 $$M_{yc} = F_y S_{xc} \quad (F4-4)$$

 $$F_{cr} = \frac{C_h \pi^2 E}{(L_o)^2} \sqrt{1 + 0.078 \frac{J}{S_{xc} h_o} \left(\frac{L_o}{r_i} \right)^2} \quad (F4-5)$$

 For $\frac{I_{yc}}{I_y} \leq 0.23$, J shall be taken as zero

 where

 $I_{yc} = \text{moment of inertia of the compression flange about } y\text{-axis, in}^4$

 The stress, F_L, is determined as follows:

 (i) When $\frac{S_{st}}{S_{xc}} \geq 0.7$

 $$F_L = 0.7 F_y \quad (F4-6a)$$

 (ii) When $\frac{S_{st}}{S_{xc}} < 0.7$

 $$F_L = F_y \frac{S_{st}}{S_{xc}} \geq 0.5 F_y \quad (F4-6b)$$

Specification for Structural Steel Buildings, Public Review Draft dated March 1, 2009
The limiting laterally unbraced length for the limit state of yielding, L_p, is determined as:

$$L_p = 1.1r \frac{E}{F_y} \quad (F4-7)$$

The limiting unbraced length for the limit state of inelastic lateral-torsional buckling, L_r, is determined as:

$$L_r = 1.95r \frac{E}{F_L} \left[\frac{J}{S_{xc} h_o} + \left(\frac{J}{S_{xt} h_o} \right)^2 + 6.76 \left(\frac{F_L}{E} \right)^2 \right] \quad (F4-8)$$

The web plastification factor, R_{pc}, shall be determined as follows:

When $I_{yc}/I_y > 0.23$

(i) When $\frac{h}{t_w} \leq \lambda_{pw}$

$$R_{pc} = \frac{M_p}{M_{yc}} \quad (F4-9a)$$

(ii) When $\frac{h}{t_w} > \lambda_{pw}$

$$R_{pc} = \frac{M_p}{M_{yc}} \left(\frac{M_p}{M_{yc}} - 1 \right) \left(\lambda - \lambda_{pc} \right) \leq \frac{M_p}{M_{yc}} \quad (F4-9b)$$

When $I_{yc}/I_y \leq 0.23$

$$R_{pc} = 1.0$$

where

$$M_p = Z_x F_y \leq 1.6 S_{xt} F_y$$

S_{xc}, S_{xt} = elastic section modulus referred to compression and tension flanges, respectively, in.³ (mm³)

$$\lambda = \frac{h}{t_w}$$

λ_{pw} = the limiting slenderness for a compact web, Table B4.1

λ_{rw} = the limiting slenderness for a noncompact web, Table B4.1

h_c = twice the distance from the centroid to the following: the inside face of the compression flange less the fillet or corner radius, for rolled shapes; the nearest line of fasteners at the compression flange or the inner faces of the compression flange when welds are used, for built-up sections, in. (mm)

The effective radius of gyration for lateral-torsional buckling, r, is determined as follows:

American Institute of Steel Construction
(i) For I-shapes with a rectangular compression flange

\[r_t = \frac{b_{fc}}{\sqrt{12 \left(\frac{h_w}{d} + \frac{1}{6} a_w \frac{h^2}{h_a d} \right)}} \quad \text{(F4-10)} \]

where

\[a_w = \frac{h_t c_f}{b_{fc} t_{fc}} \quad \text{(F4-11)} \]

\[b_{fc} = \text{compression flange width, in. (mm)} \]
\[t_{fc} = \text{compression flange thickness, in. (mm)} \]

(ii) For I-shapes with a channel cap or a cover plate attached to the compression flange

\[r_t = \text{radius of gyration of the flange components in flexural compression plus one-third of the web area in compression due to application of major axis bending moment alone, in. (mm)} \]

\[a_w = \text{the ratio of two times the web area in compression due to application of major axis bending moment alone to the area of the compression flange components} \]

User Note: For I-shapes with a rectangular compression flange, \(r_t \) may be approximated accurately and conservatively as the radius of gyration of the compression flange plus one-third of the compression portion of the web; in other words,

\[r_t = \frac{b_{fc}}{\sqrt{12 \left(1 + \frac{1}{6} a_w \right)}} \]

3. Compression Flange Local Buckling

(a) For sections with compact flanges, the limit state of local buckling does not apply.

(b) For sections with noncompact flanges

\[M_n = \left[R_{pc}^* M_{yc} - \left(R_{pc}^* M_{yc} - F_L S_{xc} \right) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) \right] \quad \text{(F4-12)} \]

(c) For sections with slender flanges

\[M_n = \frac{0.9E_k c S_{xc}}{\lambda^2} \quad \text{(F4-13)} \]

where

\[F_L \] is defined in Equations F4-6a and F4-6b

\[R_{pc}^* \] is the web plastification factor, determined by Equations F4-9
4. Tension Flange Yielding

(a) When \(S_{xt} \geq S_{xc} \), the limit state of tension flange yielding does not apply.

(b) When \(S_{xt} < S_{xc} \)

\[
M_n = R_{pf}M_{xt}
\]

where

\[
M_{xt} = F_yS_{xt}
\]

The web plastification factor corresponding to the tension flange yielding limit state, \(R_{pf} \), is determined as follows:

(i) When \(\frac{h}{t_w} \leq \lambda_{pw} \)

\[
R_{pf} = \frac{M_p}{M_{xt}}
\]

(ii) When \(\frac{h}{t_w} > \lambda_{pw} \)

\[
R_{pf} = \left[\frac{M_p}{M_{xt}} - \left(\frac{M_p}{M_{xt}} - 1 \right) \left(\frac{\lambda - \lambda_{pw}}{\lambda_{pw} - \lambda_{pw}} \right) \right] \leq \frac{M_p}{M_{xt}}
\]

where

\[
\lambda = \frac{h}{t_w}
\]

\(\lambda_{pw} = \lambda_{pw} \), the limiting slenderness for a compact web, defined in Table B4.1

\(\lambda_{rw} = \lambda_{rw} \), the limiting slenderness for a noncompact web, defined in Table B4.1

F5. DOUBLY SYMMETRIC AND SINGLY SYMMETRIC I-SHAPED MEMBERS WITH SLENDER WEBS BENT ABOUT THEIR MAJOR AXIS

This section applies to doubly symmetric and singly symmetric I-shaped members with slender webs attached to the mid-width of the flanges and bent about their major axis as defined in Section B4.1 for flexure.
The nominal flexural strength, M_n, shall be the lowest value obtained according to the limit states of compression flange yielding, lateral-torsional buckling, compression flange local buckling and tension flange yielding.

1. **Compression Flange Yielding**

$$M_n = R_{pg} F_y S_{xc} \quad \text{(F5-1)}$$

2. **Lateral-Torsional Buckling**

$$M_n = R_{pg} F_{cr} S_{xc} \quad \text{(F5-2)}$$

(a) When $L_b \leq L_p$, the limit state of lateral-torsional buckling does not apply.

(b) When $L_p < L_b \leq L_r$

$$F_{cr} = C_b C_y F_y \left(\frac{L_p - L_b}{L_r - L_p} \right) \leq F_y \quad \text{(F5-3)}$$

(c) When $L_b > L_r$

$$F_{cr} = \frac{C_b \pi^2 E}{r_t} \leq F_y \quad \text{(F5-4)}$$

where

- L_p is defined by Equation F4-7

$$L_r = \pi r_t \sqrt{\frac{E}{0.7 F_y}} \quad \text{(F5-5)}$$

R_{pg} is the bending strength reduction factor:

$$R_{pg} = 1 - \frac{a_w}{1200 + 300a_w} \left(\frac{h_s}{t_w} - 5.7 \sqrt{\frac{E}{F_y}} \right) \leq 1.0 \quad \text{(F5-6)}$$

a_w is defined by Equation F4-11 but shall not exceed 10.

r_t is the effective radius of gyration for lateral buckling as defined in Section F4.
3. **Compression Flange Local Buckling**

\[M_n = R_{pg} F_{cr} S_{wc} \] \hspace{1cm} (F5-7)

(a) For sections with compact flanges, the *limit state* of compression flange *local buckling* does not apply.

(b) For sections with noncompact flanges

\[F_{cr} = \left[F_y - \left(0.3 F_y \right) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) \right] \] \hspace{1cm} (F5-8)

(c) For sections with slender flanges

\[F_{cr} = \frac{0.9 E k_e}{\left(\frac{b_f}{2 t_f} \right)^2} \] \hspace{1cm} (F5-9)

where

\[k_e = \frac{4}{\sqrt{h_l t_w}} \]
and shall not be taken less than 0.35 nor greater than 0.76 for calculation purposes.

\[\lambda = \frac{b_f}{2 t_f} \]

\[\lambda_{pf} = \lambda_{pf}, \] the limiting slenderness for a compact flange, Table B4.1

\[\lambda_{rf} = \lambda_{rf}, \] the limiting slenderness for a noncompact flange, Table B4.1

4. **Tension Flange Yielding**

(a) When \(S_{xt} \geq S_{xc} \), the *limit state* of tension flange *yielding* does not apply.

(b) When \(S_{xt} < S_{xc} \)

\[M_n = F_y S_{xt} \] \hspace{1cm} (F5-10)

F6. I-SHAPED MEMBERS AND CHANNELS BENT ABOUT THEIR MINOR AXIS

This section applies to I-shaped members and channels bent about their minor axis.

The nominal flexural strength, \(M_n \), shall be the lower value obtained according to the *limit states* of *yielding* (plastic moment) and flange *local buckling*.

1. **Yielding**

\[M_n = M_p = F_y Z_y \leq 1.6 F_y S_y \] \hspace{1cm} (F6-1)
2. **Flange Local Buckling**

3. (a) For sections with compact flanges the limit state of flange local buckling does not apply.

User Note: All current ASTM A6 W, S, M, C and MC shapes except W21x48, W14x99, W14x90, W12x65, W10x12, W8x31, W8x10, W6x15, W6x9, W6x8.5 and M4x6 have compact flanges at $F_y = 50$ ksi (345 MPa).

(b) For sections with noncompact flanges

$$M_a = \left[M_p - \left(M_p F_y S_y \right) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} \right) \right]$$

(c) For sections with slender flanges

$$M_a = F_{cr} S_y$$

where

$$F_{cr} = \frac{0.69E}{\frac{b}{t_f}}$$

$$\lambda = \frac{b}{t_f}$$

$$\lambda_{pf} = \lambda_{ps},$$

the limiting slenderness for a compact flange, Table B4.1

$$\lambda_{rf} = \sqrt{\frac{E}{F_y}}$$

where

- b = for flanges of I-shaped members, half the full-flange width, b_f; for flanges of channels, the full nominal dimension of the flange, in. (mm)
- t_f = thickness of the flange, in. (mm)
- S_y = for a channel shall be taken as the minimum section modulus

F7. **SQUARE AND RECTANGULAR HSS AND BOX-SHAPED MEMBERS**

This section applies to square and rectangular HSS, and doubly symmetric box-shaped members bent about either axis, having compact or noncompact webs and compact, noncompact or slender flanges as defined in Section B4 for flexure.

The nominal flexural strength, M_n, shall be the lowest value obtained according to the limit states of yielding (plastic moment), flange local buckling and web local buckling under pure flexure.

User Note: Very long rectangular HSS bent about the major axis are subject to lateral-torsional buckling; however, the Specification...
1. **Yielding**

\[M_n = M_p = F_y Z \] \hspace{1cm} (F7-1)

where

\[Z = \text{plastic section modulus about the axis of bending, in.}^3 \text{ (mm}^3\text{)} \]

2. **Flange Local Buckling**

(a) For **compact sections**, the limit state of flange local buckling does not apply.

(b) For sections with noncompact flanges

\[M_n = M_p - (M_p - F_y S) \left(3.57 \frac{b}{t_f} \sqrt{\frac{F_y}{E}} - 4.0 \right) \leq M_p \] \hspace{1cm} (F7-2)

(c) For sections with slender flanges

\[M_n = F_y S_e \] \hspace{1cm} (F7-3)

where

\[S_e = \text{effective section modulus determined with the effective width, } b_e, \text{ of the compression flange taken as:} \]

\[b_e = 1.92 t_f \sqrt{\frac{E}{F_y}} 1 - \frac{0.38}{b/t_f} \sqrt{\frac{E}{F_y}} \leq b \] \hspace{1cm} (F7-4)

3. **Web Local Buckling**

(a) For **compact sections**, the limit state of web local buckling does not apply.

(b) For sections with noncompact webs

\[M_n = M_p - (M_p - F_y S) \left(0.305 \frac{h}{t_u} \sqrt{\frac{F_y}{E}} - 0.738 \right) \leq M_p \] \hspace{1cm} (F7-5)

F8. ROUND HSS

This section applies to round HSS having \(D/t\) ratios of less than \(0.45 \frac{E}{F_y}\).

The nominal flexural strength, \(M_n\), shall be the lower value obtained according to the limit states of yielding (plastic moment) and local buckling.

1. **Yielding**

Specification for Structural Steel Buildings, Public Review Draft dated March 1, 2009

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
2. Local Buckling

(a) For compact sections, the limit state of flange local buckling does not apply.

(b) For noncompact sections

\[
M_n = \left(\frac{0.021E}{D/t} + F_y \right) S
\]

(F8-2)

(c) For sections with slender walls

\[
M_n = F_{cr} S
\]

(F8-3)

where

\[
F_{cr} = \frac{0.33E}{D/t}
\]

(F8-4)

S = elastic section modulus, in.\(^3\) (mm\(^3\))

t = thickness of wall

F9. TEES AND DOUBLE ANGLES LOADED IN THE PLANE OF SYMMETRY

This section applies to tees and double angles loaded in the plane of symmetry.

The nominal flexural strength, \(M_n\), shall be the lowest value obtained according to the limit states of yielding (plastic moment), lateral-torsional buckling and flange local buckling.

1. Yielding

\[
M_n = M_p
\]

(F9-1)

where

\[
M_p = F_y Z_s \leq 1.6 M_y \text{ for stems in tension} \quad (F9-2)
\]

\[
M_p = F_y Z_s \leq M_y \text{ for stems in compression} \quad (F9-3)
\]

2. Lateral-Torsional Buckling

\[
M_n = M_{cr} = \pi \sqrt{EI_s GJ} L_t \left[B + \sqrt{1 + B^2} \right]
\]

(F9-4)

where

\[
B = \pm 2.3 \left(\frac{d}{L_t} \right) \sqrt{\frac{I_y}{J}}
\]

(F9-5)

The plus sign for \(B\) applies when the stem is in tension and the minus sign applies when the stem is in compression. If the tip of the stem is in...
3. Flange Local Buckling of Tees

(a) For sections with a compact flange in flexural compression, the limit state of flange local buckling does not apply.

(b) For sections with a noncompact flange in flexural compression,

\[M_n = M_p - (M_p - 0.7F_y S_{xc}) \left(\frac{\lambda - \lambda_{pf}}{\lambda_{cf} - \lambda_{pf}} \right) \leq 1.6M_y \] \hspace{1cm} (F9-6)

(c) For sections with a slender flange in flexural compression

\[M_n = \frac{0.7ES_{xc}}{\left(\frac{b_f}{2t_f} \right)^2} \] \hspace{1cm} (F9-7)

where

\[S_{xc} = \text{the elastic section modulus referred to the compression flange, in}^3 \text{ (mm}^3) \]

\[\lambda = \frac{b_f}{2t_f} \]

\[\lambda_{pf} = \lambda_p, \text{ the limiting slenderness for a compact flange, Table B4.1} \]

\[\lambda_{cf} = \lambda_r, \text{ the limiting slenderness for a noncompact flange, Table B4.1} \]

4. Local Buckling of Tee Stems in Flexural Compression

\[M_n = F_{cr} S_x \] \hspace{1cm} (F9-8)

\[S_x = \text{the elastic section modulus} \]

The critical stress, \(F_{cr}\), is determined as follows:

When \(\frac{d}{t_w} \leq 0.84 \sqrt{\frac{E}{F_y}} \)
F - 115

F cr = F y

(F9-9)

1975
When \(0.84 \sqrt{\frac{E}{F_y}} < \frac{d}{t_w} \leq 1.03 \sqrt{\frac{E}{F_y}} \)

1976

1977

\[
F_{cr} = \left[2.55 - 1.84 \frac{d}{t_w} \sqrt{\frac{F_y}{E}} \right] F_y
\]

(F9-10)

1978

1979

When \(\frac{d}{t_w} > 1.03 \sqrt{\frac{E}{F_y}} \)

1980

1981

1982

\[
F_{cr} = 0.69 \frac{E}{(\frac{d}{t_w})^2}
\]

(F9-11)

1983

F10. SINGLE ANGLES

This section applies to single angles with and without continuous lateral restraint along their length.

1984

Single angles with continuous lateral-torsional restraint along the length are permitted to be designed on the basis of geometric axis (x, y) bending. Single angles without continuous lateral-torsional restraint along the length shall be designed using the provisions for principal axis bending except where the provision for bending about a geometric axis is permitted.

1985

If the moment resultant has components about both principal axes or the moment is about one principal axis and there is axial load, the combined stress shall be determined using the provisions of Section H2. The provisions in Sections F10.2(i) and (ii) for bending moment about the geometric axis of equal-leg angles shall not be used if the angle has axial load.

1986

User Note: For geometric axis design, use section properties computed about the x- and y- axis of the angle, parallel and perpendicular to the legs. For principal axis design use section properties computed about the major and minor principal axes of the angle.

1987

The nominal flexural strength, \(M_n \), shall be the lowest value obtained according to the limit states of yielding (plastic moment), lateral-torsional buckling, and leg local buckling.

1988

User Note: For bending about the minor axis, only the limit states of
1. Yielding

\[M_n = 1.5M_y \]
\[(F10-1)\]

where

\[M_y = \text{yield moment about the axis of bending, kip-in. (N-mm)} \]

2. Lateral-Torsional Buckling

For single angles without continuous lateral-torsional restraint along the length

(a) When \(M_e \leq M_y \)

\[M_n = \left(0.92 - \frac{0.17M_e}{M_y} \right) M_e \]
\[(F10-2)\]

(b) When \(M_e > M_y \)

\[M_n = \left(1.92 - 1.17 \sqrt{\frac{M_y}{M_e}} \right) M_y \leq 1.5M_y \]
\[(F10-3)\]

where

\[M_e, \text{ the elastic lateral-torsional buckling moment, is determined as follows:} \]

(i) For bending moment about one of the geometric axes of an equal-leg angle with no lateral-torsional restraint:

(a) With maximum compression at the toe

\[M_e = \frac{0.66Eb^4tC_b}{L^2} \left[1 + 0.78 \left(\frac{Lt}{b^2} \right)^2 - 1 \right] \]
\[(F10-4a)\]

(b) With maximum tension at the toe

\[M_e = \frac{0.66Eb^4tC_b}{L^2} \left[1 + 0.78 \left(\frac{Lt}{b^2} \right)^2 + 1 \right] \]
\[(F10-4b)\]

User Note: \(M_n \) may be taken as \(M_y \) for single angles with their vertical leg toe in compression, and having a span-to-depth ratio less than or equal to \(\frac{1.64E}{F_y} \left(\frac{t}{b} \right)^2 - 1.4 \frac{F_y}{E} \).

(ii) For bending moment about one of the geometric axes of an equal-leg angle with lateral-torsional restraint at the point of maximum moment only:

\[M_e \text{ shall be taken as } 1.25 \text{ times } M_e \text{ computed using Equation} \]

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
F10-4a or F10-4b.

- For bending about the major principal axis of equal-leg angles:
 \[
 M_e = \frac{0.46Eb^2t^2C_b}{L} \tag{F10-5}
 \]

- For bending about the major principal axis of unequal-leg angles:
 \[
 M_e = \frac{4.9EI_cC_b}{L^2} \left(\beta_w^2 + 0.052 \left(\frac{Lt}{r_z^2} \right) + \beta_w \right) \tag{F10-6}
 \]

where

- \(C_b \) is computed using Equation F1-1 with a maximum value of 1.5.
- \(L \) is the laterally unbraced length of a member, in. (mm)
- \(I_z \) is the minor principal axis moment of inertia, in. 4 (mm 4)
- \(r_z \) is the radius of gyration for the minor principal axis, in. (mm)
- \(t \) is the angle leg thickness, in. (mm)
- \(\beta_w \) is a section property for unequal leg angles, positive for short legs in compression and negative for long legs in compression. If the long leg is in compression anywhere along the unbraced length of the member, the negative value of \(\beta_w \) shall be used.

User Note: The equation for \(\beta_w \) and values for common angle sizes are listed in the Commentary.

3. Leg Local Buckling

The limit state of leg local buckling applies when the toe of the leg is in compression.

- For compact sections, the limit state of leg local buckling does not apply.
- For sections with noncompact legs:
 \[
 M_n = F_y S_e \left(2.43 - 1.72 \left(\frac{b}{t} \right) \left(\frac{F_y}{E} \right) \right) \tag{F10-7}
 \]
- For sections with slender legs:
 \[
 M_n = F_{cr} S_e \tag{F10-8}
 \]

where
\[F_{ce} = \frac{0.71E}{\left(\frac{b}{t} \right)^2} \]
\[b = \text{outside width of leg in compression, in. (mm)} \]
\[S_c = \text{elastic section modulus to the toe in compression relative to the axis of bending, in.}^3 \text{ (mm}^3) \]. For bending about one of the geometric axes of an equal-leg angle with no lateral-torsional restraint, \(S_c \) shall be 0.80 of the geometric axis section modulus.

F11. RECTANGULAR BARS AND ROUNDS

This section applies to rectangular bars bent about either geometric axis and rounds.

The nominal flexural strength, \(M_n \), shall be the lower value obtained according to the limit states of yielding (plastic moment) and lateral-torsional buckling.

1. **Yielding**

For rectangular bars with \(\frac{L_0d}{t^2} \leq \frac{0.08E}{F_y} \) bent about their major axis, rectangular bars bent about their minor axis and rounds:

\[M_n = M_p = F_yZ \leq 1.6M_y \]
\[\text{(F11-1)} \]

2. **Lateral-Torsional Buckling**

(a) For rectangular bars with \(\frac{L_0d}{t^2} \leq \frac{0.08E}{F_y} \leq \frac{1.9E}{F_y} \) bent about their major axis:

\[M_n = C_b \left[1.52 - 0.274 \left(\frac{L_0d}{t^2} \right) \frac{F_y}{E} \right] M_y \leq M_p \]
\[\text{(F11-2)} \]

(b) For rectangular bars with \(\frac{L_0d}{t^2} > \frac{1.9E}{F_y} \) bent about their major axis:

\[M_n = F_{cr}S_c \leq M_p \]
\[\text{(F11-3)} \]

where

\[F_{cr} = \frac{1.9EC_b}{L_0d} \]
\[\text{(F11-4)} \]
\(t = \) width of rectangular bar parallel to axis of bending, in. (mm)
\(d = \) depth of rectangular bar, in. (mm)
\(L_b = \) length between points that are either braced against lateral displacement of the compression region, or between points braced to prevent twist of the cross section, in. (mm)

(c) For rounds and rectangular bars bent about their minor axis, the limit state of lateral-torsional buckling need not be considered.

F12. UNSYMMETRICAL SHAPES

This section applies to all unsymmetrical shapes, except single angles.

The nominal flexural strength, \(M_n \), shall be the lowest value obtained according to the limit states of yielding (yield moment), lateral-torsional buckling and local buckling where

\[
M_n = F_n S
\] \hspace{1cm} \text{(F12-1)}

where
\(S = \) lowest elastic section modulus relative to the axis of bending, in.\(^3\) (mm\(^3\))

1. Yielding

\(F_n = F_y \) \hspace{1cm} \text{(F12-2)}

2. Lateral-Torsional Buckling

\(F_n = F_{cr} \leq F_y \) \hspace{1cm} \text{(F12-3)}

where
\(F_{cr} = \) lateral-torsional buckling stress for the section as determined by analysis, ksi (MPa)

User Note: In the case of Z-shaped members, it is recommended that \(F_{cr} \) be taken as \(0.5F_{cr} \) of a channel with the same flange and web properties.

3. Local Buckling

\(F_n = F_{cr} \leq F_y \) \hspace{1cm} \text{(F12-4)}

where
\(F_{cr} = \) local buckling stress for the section as determined by analysis, ksi (MPa)
120

F13. PROPORTIONS OF BEAMS AND GIRDERs

1. Strength Reductions for Members with Holes in the Tension Flange

This section applies to rolled or built-up shapes and cover-plated beams with holes, proportioned on the basis of flexural strength of the gross section.

In addition to the limit states specified in other sections of this Chapter, the nominal flexural strength, \(M_n \), shall be limited according to the limit state of tensile rupture of the tension flange.

(a) When \(F_u A_{fn} \geq Y_t F_y A_{fg} \), the limit state of tensile rupture does not apply.

(b) When \(F_u A_{fn} < Y_t F_y A_{fg} \), the nominal flexural strength, \(M_n \), at the location of the holes in the tension flange shall not be taken greater than

\[
M_n = \frac{F_u A_{fn}}{A_{fg}} S_n
\]

where

\(A_{fg} = \) gross area of tension flange, calculated in accordance with the provisions of Section B4.3a, in.\(^2\) (mm\(^2\))

\(A_{fn} = \) net area of tension flange, calculated in accordance with the provisions of Section B4.3b, in.\(^2\) (mm\(^2\))

\(Y_t = 1.0 \) for \(F_y / F_u \leq 0.8 \)

\(= 1.1 \) otherwise

2. Proportioning Limits for I-Shaped Members

Singly symmetric I-shaped members shall satisfy the following limit:

\[
0.1 \leq \frac{I_w}{I_y} \leq 0.9
\]

I-shaped members with slender webs shall also satisfy the following limits:

(a) When \(\frac{a}{h} \leq 1.5 \)

\[
\left(\frac{h}{t_w} \right)_{\text{max}} = 12.0 \left(\frac{F}{F_y} \right)
\]

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
(b) When \(\frac{a}{h} > 1.5 \)

\[
\left(\frac{h}{t_{w,\mathrm{max}}} \right) = \frac{0.40E}{F_y} \quad \text{(F13-4)}
\]

where

\[a = \text{clear distance between transverse stiffeners, in. (mm)} \]

In unstiffened girders \(h / t_w \) shall not exceed 260. The ratio of the web area to the compression flange area shall not exceed 10.

3. **Cover Plates**

Flanges of welded beams or girders may be varied in thickness or width by splicing a series of plates or by the use of cover plates.

The total cross-sectional area of cover plates of bolted girders shall not exceed 70% of the total flange area.

High-strength bolts or welds connecting flange to web, or cover plate to flange, shall be proportioned to resist the total horizontal shear resulting from the bending forces on the girder. The longitudinal distribution of these bolts or intermittent welds shall be in proportion to the intensity of the shear.

However, the longitudinal spacing shall not exceed the maximum specified for compression or tension members in Section E6 or D4, respectively. Bolts or welds connecting flange to web shall also be proportioned to transmit to the web any loads applied directly to the flange, unless provision is made to transmit such loads by direct bearing.

Partial-length cover plates shall be extended beyond the theoretical cutoff point and the extended portion shall be attached to the beam or girder by high-strength bolts in a slip-critical connection or fillet welds. The attachment shall be adequate, at the applicable strength given in Sections J2.2, J3.8 or B3.10 to develop the cover plate’s portion of the flexural strength in the beam or girder at the theoretical cutoff point.

For welded cover plates, the welds connecting the cover plate termination to the beam or girder shall have continuous welds along both edges of the cover plate in the length \(a' \), defined below, and shall be adequate to develop the cover plate’s portion of the available strength of the beam or girder at the distance \(a' \) from the end of the cover plate.

(a) When there is a continuous weld equal to or larger than three-fourths of the plate thickness across the end of the plate.
\[a' = w \] \hspace{1cm} \text{(F13-5)}

where
\[w = \text{width of cover plate, in. (mm)} \]

(b) When there is a continuous weld smaller than three-fourths of the plate thickness across the end of the plate

\[a' = 1.5w \] \hspace{1cm} \text{(F13-6)}

(c) When there is no weld across the end of the plate

\[a' = 2w \] \hspace{1cm} \text{(F13-7)}

4. **Built-Up Beams**

Where two or more beams or channels are used side-by-side to form a flexural member, they shall be connected together in compliance with Section E6.2. When concentrated loads are carried from one beam to another or distributed between the beams, diaphragms having sufficient stiffness to distribute the load shall be welded or bolted between the beams.
CHAPTER G
DESIGN OF MEMBERS FOR SHEAR

This chapter addresses webs of singly or doubly symmetric members subject to shear in the plane of the web, single angles and HSS sections, and shear in the weak direction of singly or doubly symmetric shapes.

The chapter is organized as follows:

G2. Members with Unstiffened or Stiffened Webs
G3. Tension Field Action
G4. Single Angles
G5. Rectangular HSS and Box Members
G6. Round HSS
G7. Weak Axis Shear in Singly and Doubly Symmetric Shapes
G8. Beams and Girders with Web Openings

User Note: For cases not included in this chapter, the following sections apply:

- H3.3 Unsymmetric sections.
- J4.2 Shear strength of connecting elements.
- J10.6 Web panel zone shear.

G1. GENERAL PROVISIONS

Two methods of calculating shear strength are presented below. The method presented in Section G2 does not utilize the post buckling strength of the member (tension field action). The method presented in Section G3 utilizes tension field action.

The design shear strength, $\phi_v \, V_n$, and the allowable shear strength, V_n/Ω_v, shall be determined as follows.

For all provisions in this chapter except Section G2.1(a):

$$\phi_v = 0.90 \, \text{(LRFD)} \quad \Omega_v = 1.67 \, \text{(ASD)}$$

G2. MEMBERS WITH UNSTIFFENED OR STIFFENED WEBS

1. Shear Strength

This section applies to webs of singly or doubly symmetric members and channels subject to shear in the plane of the web.
The nominal shear strength, V_n, of unstiffened or stiffened webs according to the limit states of shear yielding and shear buckling, is

$$V_n = 0.6 F_y A_w C_v$$ \hspace{1cm} (G2-1)

(a) For webs of rolled I-shaped members with $h/t_w \leq 2.24 \sqrt{E/F_y}$:

$$\phi_v = 1.00 \text{ (LRFD)} \quad \Omega_v = 1.50 \text{ (ASD)}$$

and

$$C_v = 1.0 \hspace{1cm} (G2-2)$$

User Note: All current ASTM A6 W, S, and HP shapes except W44x230, W40x149, W36x135, W33x118, W30x90, W24x55, W16x26 and W12x14 meet the criteria stated in Section G2.1 (a) for $F_y = 50$ ksi (345 MPa).

(b) For webs of all other doubly symmetric shapes and singly symmetric shapes and channels, except round HSS, the web shear coefficient, C_v, is determined as follows:

(i) When $h/t_w \leq 1.10 \sqrt{k_v E / F_y}$

$$C_v = 1.0 \hspace{1cm} (G2-3)$$

(ii) When $1.10 \sqrt{k_v E / F_y} < h/t_w \leq 1.37 \sqrt{k_v E / F_y}$

$$C_v = \frac{1.10 \sqrt{k_v E / F_y}}{h/t_w} \hspace{1cm} (G2-4)$$

(iii) When $h/t_w > 1.37 \sqrt{k_v E / F_y}$

$$C_v = \frac{1.51 E k_v}{(h/t_w)^2 F_y} \hspace{1cm} (G2-5)$$

where

- $A_w = \text{ the overall depth times the web thickness, } d t_w, \text{ in.}^2 (\text{mm}^2)$
- $h = \text{ for rolled shapes, the clear distance between flanges less the fillet or corner radii, in. (mm)}$
- $= \text{ for built-up welded sections, the clear distance between flanges, in. (mm)}$
- $= \text{ for built-up bolted sections, the distance between fastener lines, in. (mm)}$
- $= \text{ for tees, the overall depth, in. (mm)}$
- $t_w = \text{ thickness of web, in. (mm)}$

The web plate shear buckling coefficient, k_v, is determined as follows:
(i) For unstiffened webs with \(h/w_t < 260 \):

\[k_v = 5 \]

except for the stem of tee shapes where \(k_v = 1.2 \).

(ii) For stiffened webs:

\[k_v = 5 + \frac{5}{(a/h)^2} \quad \text{(G2-6)} \]

\[= 5 \text{ when } a/h > 3.0 \text{ or } a/h > \left[\frac{260}{(h/w_t)} \right]^2 \]

where

\[a = \text{clear distance between transverse stiffeners, in. (mm)} \]

User Note: For all ASTM A6 W, S, M and HP shapes except M12.5x12.4, M12.5x11.6, M12x11.8, M12x10.8, M12x10, M10x8 and M10x7.5, when \(F_y = 50 \text{ ksi (345 MPa)}, C_v = 1.0 \).

2. Transverse Stiffeners

Transverse stiffeners are not required where \(h/w_t \leq 2.46\sqrt{E/F_y} \), or where the required shear strength is less than or equal to the available shear strength provided in accordance with Section G2.1 for \(k_v = 5 \).

The moment of inertia, \(I_{st} \), of transverse stiffeners used to develop the available web shear strength, as provided in Section G2.1, about an axis in the web center for stiffener pairs or about the face in contact with the web plate for single stiffeners, shall meet the following requirement

\[I_{st} \geq b t_w^3/j \quad \text{(G2-7)} \]

where

\[j = \frac{2.5}{(a/h)^2} - 2 \geq 0.5 \quad \text{(G2-8)} \]

and

\[b \text{ is the smaller of the dimensions } a \text{ and } h. \]

Transverse stiffeners are permitted to be stopped short of the tension flange, provided bearing is not needed to transmit a concentrated load or reaction. The weld by which transverse stiffeners are attached to the
web shall be terminated not less than four times nor more than six times the web thickness from the near toe to the web-to-flange weld. When single stiffeners are used, they shall be attached to the compression flange, if it consists of a rectangular plate, to resist any uplift tendency due to torsion in the flange.

Bolts connecting stiffeners to the girder web shall be spaced not more than 12 in. (305 mm) on center. If intermittent fillet welds are used, the clear distance between welds shall not be more than 16 times the web thickness nor more than 10 in. (250 mm).

G3. TENSION FIELD ACTION

1. Limits on the Use of Tension Field Action

Consideration of tension field action is permitted for flanged members when the web plate is supported on all four sides by flanges or stiffeners. Consideration of tension field action is not permitted:

(a) for end panels in all members with transverse stiffeners;

(b) when \(a/h \) exceeds 3.0 or \([260/(h/t_w)]^2 \);

(c) when \(2A_w\left(A_{fc} + A_{ft}\right) > 2.5 \); or

(d) when \(h/b_{fc} \) or \(h/b_{ft} > 6.0 \)

where

\(A_{fc} = \) area of compression flange, in.\(^2\) (mm\(^2\))

\(A_{ft} = \) area of tension flange, in.\(^2\) (mm\(^2\))

\(b_{fc} = \) width of compression flange, in. (mm)

\(b_{ft} = \) width of tension flange, in. (mm)

In these cases, the nominal shear strength, \(V_n \), shall be determined according to the provisions of Section G2.

2. Shear Strength with Tension Field Action

When tension field action is permitted according to Section G3.1, the nominal shear strength, \(V_n \), with tension field action, according to the limit state of tension field yielding, shall be

(a) When \(h/t_w \leq 1.10\sqrt{k_v E / F_y} \)

\[V_n = 0.6F_y A_w \text{ (G3-1)} \]

(b) When \(h/t_w > 1.10\sqrt{k_v E / F_y} \)
3. Transverse Stiffeners

Transverse stiffeners subject to tension field action shall meet the requirements of Section G2.2 and the following limitations:

\[(b/t)_{st} \leq 0.56 \left(\frac{E}{F_{yst}} \right) \] \hspace{1cm} \text{(G3-3)}

\[I_{st} \geq I_{st1} + (I_{st2} - I_{st1}) \left(\frac{V_{c1} - V_{c1}}{V_{c2} - V_{c1}} \right) \] \hspace{1cm} \text{(G3-4)}

where

\((b/t)_{st} \) = the width-thickness ratio of the stiffener

\(F_{yst} \) = specified minimum yield stress of the stiffener material, ksi (MPa)

\(I_{st} \) = moment of inertia of the transverse stiffeners about an axis in the web center for stiffener pairs, or about the face in contact with the web plate for single stiffeners, in.\(^4\) (mm\(^4\))

\(I_{st1} \) = minimum moment of inertia of the transverse stiffeners required for development of the web shear buckling resistance in Section G2.2, in.\(^4\) (mm\(^4\))

\(I_{st2} \) = minimum moment of inertia of the transverse stiffeners required for development of the full web shear buckling plus the web tension field resistance, \(V_r = V_{c2} \), in.\(^4\) (mm\(^4\))

\[\rho_{st} = \frac{h^4}{40} \left(\frac{F_{yw}}{E} \right)^{1.5} \] \hspace{1cm} \text{(G3-5)}

\(V_r \) = larger of the required shear strengths in the adjacent web panels using LRFD or ASD load combinations, kips (N)

\(V_{c1} \) = smaller of the available shear strengths in the adjacent web panels with \(V_n \) as defined in Section G2.1, kips (N)

\(V_{c2} \) = smaller of the available shear strengths in the adjacent web panels with \(V_n \) as defined in Section G3.2, kips (N)

\(\rho_{st} \) = the larger of \(F_{yw}/F_{yst} \) and 1.0
\(F_{yw} = \text{specified minimum yield stress of the web material, ksi} \) (MPa)

G4. SINGLE ANGLES

The nominal shear strength, \(V_n \), of a single angle leg shall be determined using Equation G2-1 and Section G2.1(b) with \(A_w = bt \) where

\[
\begin{align*}
 b &= \text{width of the leg resisting the shear force, in. (mm)} \\
 t &= \text{thickness of angle leg, in. (mm)} \\
 h/t_w &= b/t \\
 k_v &= 1.2
\end{align*}
\]

G5. RECTANGULAR HSS AND BOX-SHAPED MEMBERS

The nominal shear strength, \(V_n \), of rectangular HSS and box members shall be determined using the provisions of Section G2.1 with \(A_w = 2ht \) where

\[
\begin{align*}
 h &= \text{width resisting the shear force, taken as the clear distance between the flanges less the inside corner radius on each side,} \\
 t &= \text{design wall thickness, equal to 0.93 times the nominal wall thickness for ERW HSS and equal to the nominal thickness for SAW HSS, in. (mm)} \\
 t_w &= t \\
 k &= 5
\end{align*}
\]

If the corner radius is not known, \(h \) shall be taken as the corresponding outside dimension minus 3 times the thickness.

G6. ROUND HSS

The nominal shear strength, \(V_n \), of round HSS, according to the limit states of shear yielding and shear buckling, shall be determined as:

\[
V_n = F_{cr}A_{g}/2 \tag{G6-1}
\]

where

\[
F_{cr} \text{ shall be the larger of }
\]

\[
F_{cr} = \frac{1.60E}{\sqrt{\frac{L}{D} \left(\frac{D}{t} \right)^2}} \tag{G6-2a}
\]

and

\[
F_{cr} = \frac{0.78E}{\left(\frac{D}{t} \right)^{3/2}} \tag{G6-2b}
\]

Specification for Structural Steel Buildings, Public Review Draft dated March 1, 2009

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
but shall not exceed $0.6F_y$

$$A_g = \text{gross area of section based on design wall thickness, in.}^2 \quad (\text{mm}^2)$$

$$D = \text{outside diameter, in. (mm)}$$

$$L_v = \text{the distance from maximum to zero shear force, in. (mm)}$$

$$t = \text{design wall thickness, equal to 0.93 times the nominal wall thickness for ERW HSS and equal to the nominal thickness for SAW HSS, in. (mm)}$$

User Note: The shear buckling equations, Equations G6-2a and G6-2b, will control for D/t over 100, high strength steels, and long lengths. For standard sections, shear yielding will usually control.

G7. WEAK AXIS SHEAR IN SINGLY AND DOUBLY SYMMETRIC SHAPES

For singly and doubly symmetric shapes loaded in the weak axis without torsion, the nominal shear strength, V_n, for each shear resisting element shall be determined using Equation G2-1 and Section G2.1(b) with $A_w = b_f t_f$, $h/t_w = b_f/t_f$, and $k_v = 1.2$.

User Note: For all ASTM A6 W, S, M, and HP shapes, when $F_y \leq 50$ ksi (345 MPa), $C_v = 1.0$.

G8. BEAMS AND GIRDERS WITH WEB OPENINGS

The effect of all web openings on the shear strength of steel and composite beams shall be determined. Adequate reinforcement shall be provided when the required strength exceeds the available strength of the member at the opening.
CHAPTER H

DESIGN OF MEMBERS FOR COMBINED FORCES AND TORSION

This chapter addresses members subject to axial force and flexure about one or both axes, with or without torsion, and members subject to torsion only.

The chapter is organized as follows:

H1. Doubly and Singly Symmetric Members Subject to Flexure and Axial Force
H2. Unsymmetric and Other Members Subject to Flexure and Axial Force
H3. Members Subject to Torsion and Combined Torsion, Flexure, Shear and/or Axial Force
H4. Rupture of Flanges with Holes Subject to Tension

User Note: For composite members, see Chapter I.

H1. DOUBLY AND SINGLY SYMMETRIC MEMBERS SUBJECT TO FLEXURE AND AXIAL FORCE

1. Doubly and Singly Symmetric Members Subject to Flexure and Compression

The interaction of flexure and compression in doubly symmetric members and singly symmetric members for which $0.1 \leq \left(\frac{I_{yc}}{I_y} \right) \leq 0.9$, constrained to bend about a geometric axis (x and/or y) shall be limited by Equations H1-1a and H1-1b, where I_{yc} is the moment of inertia about the y-axis of the compression flange, in.4 (mm4).

User Note: Section H2 is permitted to be used in lieu of the provisions of this section.

(a) When $\frac{P}{P_c} \geq 0.2$

\[
\frac{P}{P_c} + 8 \left(\frac{M_{cx}}{M_{cx}} + \frac{M_{cy}}{M_{cy}} \right) \leq 1.0 \quad (H1-1a)
\]

(b) When $\frac{P}{P_c} < 0.2$

User Note: For composite members, see Chapter I.
\[\frac{P_r}{2P_c} + \frac{M_{x}}{M_{x}} + \frac{M_{y}}{M_{y}} \leq 1.0 \quad (H1-1b) \]

where

\[P_r = \text{required axial strength using LRFD or ASD load combinations, kips (N)} \]
\[P_c = \text{available axial strength, kips (N)} \]
\[M_r = \text{required flexural strength, kip-in. (N-mm)} \]
\[M_c = \text{available flexural strength, kip-in. (N-mm)} \]
\[x = \text{subscript relating symbol to strong axis bending} \]
\[y = \text{subscript relating symbol to weak axis bending} \]

For design according to Section B3.3 (LRFD):

\[P_r = \text{required axial strength using LRFD load combinations, kips (N)} \]
\[P_c = \phi_c P_n = \text{design axial strength, determined in accordance with Chapter E, kips (N)} \]
\[M_r = \text{required flexural strength using LRFD load combinations, kip-in. (N-mm)} \]
\[M_c = \phi_b M_n = \text{design flexural strength determined in accordance with Chapter F, kip-in. (N-mm)} \]
\[\phi_c = \text{resistance factor for compression} = 0.90 \]
\[\phi_b = \text{resistance factor for flexure} = 0.90 \]

For design according to Section B3.4 (ASD):

\[P_r = \text{required axial strength using ASD load combinations, kips (N)} \]
\[P_c = \frac{P_n}{\Omega_c} = \text{allowable axial strength, determined in accordance with Chapter E, kips (N)} \]
\[M_r = \text{required flexural strength using ASD load combinations, kip-in. (N-mm)} \]
\[M_c = \frac{M_n}{\Omega_b} = \text{allowable flexural strength determined in accordance with Chapter F, kip-in. (N-mm)} \]
\[\Omega_c = \text{safety factor for compression} = 1.67 \]
\[\Omega_b = \text{safety factor for flexure} = 1.67 \]

2. **Doubly and Singly Symmetric Members Subject to Flexure and Tension**

The interaction of flexure and tension in doubly symmetric members and singly symmetric members constrained to bend about a **geometric axis** (x and/or y) shall be limited by Equations H1-1a and H1-1b,

where

For design according to Section B3.3 (LRFD):
Pr = required tensile strength using LRFD load combinations, kips (N)

\(P_e = \phi_p P_n = \text{design tensile strength, determined in accordance with Section D2, kips (N)} \)

\(M_r = \text{required flexural strength using LRFD load combinations, kip-in. (N-mm)} \)

\(M_c = \phi_b M_n = \text{design flexural strength determined in accordance with Chapter F, kip-in. (N-mm)} \)

\(\phi_t = \text{resistance factor for tension (see Section D2)} \)

\(\phi_b = \text{resistance factor for flexure = 0.90} \)

For design according to Section B3.4 (ASD):

\(P_r = \text{required tensile strength using ASD load combinations, kips (N)} \)

\(P_e = P_n / \Omega_t = \text{allowable tensile strength, determined in accordance with Section D2, kips (N)} \)

\(M_r = \text{required flexural strength using ASD load combinations, kip-in. (N-mm)} \)

\(M_c = M_n / \Omega_b = \text{allowable flexural strength determined in accordance with Chapter F, kip-in. (N-mm)} \)

\(\Omega_t = \text{safety factor for tension (see Section D2)} \)

\(\Omega_b = \text{safety factor for flexure = 1.67} \)

For doubly symmetric members, \(C_b \) in Chapter F may be multiplied by \(\sqrt{1 + \frac{\alpha P}{P_{ey}}} \) for axial tension that acts concurrently with flexure,

where

\(P_{ey} = \frac{\pi^2 EI_y}{L_b^2} \)

and

\(\alpha = 1.0 \) (LRFD) \quad \alpha = 1.6 \) (ASD)

A more detailed analysis of the interaction of flexure and tension is permitted in lieu of Equations H1-1a and H1-1b.

3. Doubly Symmetric Rolled Compact Members Subject to Single Axis Flexure and Compression

For doubly symmetric rolled compact members with \((KL)_z \leq (KL)_y \) subjected to flexure and compression with moments primarily about their major axis, it is permissible to consider the two independent limit states, in-plane instability and out-of-plane buckling or lateral-torsional buckling, separately in lieu of the combined approach.
provided in Section H1.1.

(a) For the limit state of in-plane instability, Equations H1-1 shall be used with P_{cy}, M_{rx} and M_{cx} determined in the plane of bending.

(b) For the limit state of out-of-plane buckling and lateral-torsional buckling:

$$1.5 \frac{P_{r}}{P_{cy}} - 0.5 \left(\frac{P_{r}}{P_{cy}} \right)^{2} + \left(\frac{M_{cx}}{C_{b}M_{cx}} \right)^{2} \leq 1.0 \quad (H1-2)$$

where

$P_{cy} =$ available compressive strength out of the plane of bending, kips (N)

$C_{b} =$ lateral-torsional buckling modification factor determined from Section F1

$M_{cx} =$ available lateral-torsional strength for strong axis flexure determined from Chapter F, kip-in. (N-mm)

User Note: In Equation H1-2, $C_{b}M_{cx}$ may be larger than $\phi_{b}M_{pc}$ in LRFD or M_{pc}/Ω_{b} in ASD. The yielding resistance of the beam-column is captured by Equations H1-1.

For members with $M_{cx}/M_{cy} \geq 0.05$, the provisions of Section H1.1 shall be followed.

H2. UNSYMMETRIC AND OTHER MEMBERS SUBJECT TO FLEXURE AND AXIAL FORCE

This section addresses the interaction of flexure and axial stress for shapes not covered in Section H1. It is permitted to use the provisions of this Section for any shape in lieu of the provisions of Section H1.

$$\left| \frac{f_{ra}}{F_{ca}} + \frac{f_{rbw}}{F_{cbw}} + \frac{f_{rbz}}{F_{cbz}} \right| \leq 1.0 \quad (H2-1)$$

where

$f_{ra} =$ required axial stress at the point of consideration using LRFD or ASD load combinations, ksi (MPa)

$F_{ca} =$ available axial stress at the point of consideration, ksi (MPa)

$f_{rbw}, f_{rbz} =$ required flexural stress at the point of consideration, ksi (MPa)

$F_{cbw}, F_{cbz} =$ available flexural stress at the point of consideration about the major/minor axis, ksi (MPa)

$w =$ subscript relating symbol to major principal axis bending
For design according to Section B3.3 (LRFD):

\[f_{ra} = \text{required axial stress at the point of consideration using LRFD load combinations, ksi (MPa)} \]

\[F_{ca} = \phi_{c} F_{cr} = \text{design axial stress, determined in accordance with Chapter E for compression or Section D2 for tension, ksi (MPa)} \]

\[f_{rbw}, f_{rbz} = \text{required flexural stress at the point of consideration (major axis, minor axis) using LRFD or ASD load combinations, ksi (MPa)} \]

\[F_{cbw}, F_{cz} = \frac{\phi_{c} M_n}{S} = \text{design flexural stress determined in accordance with Chapter F, ksi (MPa). Use the section modulus for the specific location in the cross section and consider the sign of the stress.} \]

\[\phi_{c} = \text{resistance factor for compression} = 0.90 \]

\[\phi_{t} = \text{resistance factor for tension (Section D2)} \]

\[\phi_{b} = \text{resistance factor for flexure} = 0.90 \]

For design according to Section B3.4 (ASD):

\[f_{ra} = \text{required axial stress at the point of consideration using ASD load combinations, ksi (MPa)} \]

\[F_{ca} = \frac{F_{cr}}{\Omega_{c}} = \text{allowable axial stress determined in accordance with Chapter E for compression, or Section D2 for tension, ksi (MPa)} \]

\[f_{rbw}, f_{rbz} = \text{required flexural stress at the point of consideration (major axis, minor axis) using LRFD or ASD load combinations, ksi (MPa)} \]

\[F_{cbw}, F_{cz} = \frac{M_n}{\Omega_{b} S} = \text{allowable flexural stress determined in accordance with Chapter F, ksi (MPa). Use the section modulus for the specific location in the cross section and consider the sign of the stress.} \]

\[\Omega_{c} = \text{safety factor for compression} = 1.67 \]

\[\Omega_{t} = \text{safety factor for tension (see Section D2)} \]

\[\Omega_{b} = \text{safety factor for flexure} = 1.67 \]

Equation H2-1 shall be evaluated using the principal bending axes by considering the sense of the flexural stresses at the critical points of the cross section. The flexural terms are either added to or subtracted from the axial term as appropriate. When the axial force is compression, second order effects shall be included according to the provisions of Chapter C.
A more detailed analysis of the interaction of flexure and tension is permitted in lieu of Equation H2-1.

H3. MEMBERS SUBJECT TO TORSION AND COMBINED TORSION, FLEXURE, SHEAR AND/OR AXIAL FORCE

1. Round and Rectangular HSS Subject to Torsion

The design torsional strength, \(\phi_T T_n \), and the allowable torsional strength, \(T_n/\Omega_T \), for round and rectangular HSS according to the limit states of torsional yielding and torsional buckling shall be determined as follows:

\[
\phi_T = 0.90 \text{ (LRFD)} \quad \Omega_T = 1.67 \text{ (ASD)}
\]

\[
T_n = F_{cr} C \quad \text{(H3-1)}
\]

where

- \(C \) is the HSS torsional constant

The critical stress, \(F_{cr} \), shall be determined as follows:

(a) For round HSS, \(F_{cr} \) shall be the larger of

\[
(i) \quad F_{cr} = \frac{1.23 E}{\sqrt[5]{L\left(\frac{D}{t}\right)^{\frac{3}{4}}}} \quad \text{(H3-2a)}
\]

and

\[
(ii) \quad F_{cr} = \frac{0.60 E}{\left(\frac{D}{t}\right)^{\frac{2}{3}}} \quad \text{(H3-2b)}
\]

but shall not exceed 0.6\(F_y \),

where

- \(L \) = length of the member, in. (mm)
- \(D \) = outside diameter, in. (mm)

(b) For rectangular HSS

\[
(i) \quad \text{When } h/t \leq 2.45 \sqrt{E/F_y} \quad F_{cr} = 0.6 F_y \quad \text{(H3-3)}
\]

\[
(ii) \quad \text{When } 2.45 \sqrt{E/F_y} < h/t \leq 3.07 \sqrt{E/F_y}
\]
\[F_{cr} = 0.6 F_y \left(2.45 \sqrt{E/F_y}\right) / (h/t) \]
\[(H3-4) \]

(iii) When \(3.07 \sqrt{E/F_y} < h/t \leq 260\)
\[F_{cr} = 0.458 \pi^2 E/(h/t)^2 \]
\[(H3-5) \]

\[h = \text{as defined in Section B4.1b(d) for the longer side, the clear distance between the sides less the inside corner radius on each side, in. (mm)} \]
\[t = \text{design wall thickness defined in Section B4.2, in. (mm)} \]

User Note: The torsional constant, \(C\), may be conservatively taken as:

For round HSS:
\[C = \frac{\pi(D-t)^2}{2} \]

For rectangular HSS:
\[C = 2(B-t)(H-t)t - 4.5(4-\pi)t^3 \]

2. **HSS Subject to Combined Torsion, Shear, Flexure and Axial Force**

When the required torsional strength, \(T_r\), is less than or equal to 20% of the available torsional strength, \(T_c\), the interaction of torsion, shear, flexure and/or axial force for HSS shall be determined by Section H1 and the torsional effects shall be neglected. When \(T_r\) exceeds 20% of \(T_c\), the interaction of torsion, shear, flexure and/or axial force shall be limited by

\[\left(\frac{P}{P_c} + \frac{M}{M_c} \right) + \left(\frac{V}{V_c} + \frac{T}{T_c} \right)^2 \leq 1.0 \]
\[(H3-6) \]

where

For design according to Section B3.3 (LRFD):

\[P_r = \text{required axial strength using LRFD load combinations, kips (N)} \]
\[P_c = \phi P_n, \text{design tensile or compressive strength in accordance with Chapter D or E, kips (N)} \]
\[M_r = \text{required flexural strength using LRFD load combinations, kip-in. (N-mm)} \]
\[M_c = \phi_b M_n, \text{design flexural strength in accordance with Chapter F, kip-in. (N-mm)} \]
\[V_r = \text{required shear strength using LRFD load combinations, kips (N)} \]
\[V_c = \phi_v V_n, \text{design shear strength in accordance with Chapter G, kips (N)} \]
For design according to Section B3.4 (ASD):

\[P_r = \frac{P_n}{\Omega}, \text{ allowable tensile or compressive strength in accordance with Chapter D or E, kips (N)} \]

\[V_c = \frac{V_n}{\Omega}, \text{ allowable shear strength in accordance with Chapter G, kips (N)} \]

\[T_r = \frac{T_n}{\Omega_T}, \text{ allowable torsional strength in accordance with Section H3.1, kip-in. (N-mm)} \]

3. Non-HSS Members Subject to Torsion and Combined Stress

The available torsional strength for non-HSS members shall be the lowest value obtained according to the limit states of yielding under normal stress, shear yielding under shear stress, or buckling, determined as follows:

\[\phi_T = 0.90 \text{ (LRFD)} \quad \Omega_T = 1.67 \text{ (ASD)} \]

(a) For the limit state of yielding under normal stress

\[F_n = F_y \text{ (H3-7)} \]

(b) For the limit state of shear yielding under shear stress

\[F_n = 0.6F_y \text{ (H3-8)} \]

(c) For the limit state of buckling

\[F_n = F_{cr} \text{ (H3-9)} \]

where

\[F_{cr} = \text{buckling stress for the section as determined by analysis,} \]

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
Some constrained local yielding is permitted adjacent to areas that remain elastic.

H4. RUPTURE OF FLANGES WITH HOLES SUBJECT TO TENSION

At locations of bolt holes in flanges subject to tension under combined axial force and major axis flexure, flange tensile rupture strength shall be limited by Equation H4-1. Each flange subject to tension due to axial force and flexure shall be checked separately.

\[
\frac{P_r}{P_c} + \frac{M_{rx}}{M_{cx}} \leq 1.0 \quad \text{(H4-1)}
\]

where

- \(P_r\) = required axial strength of the member at the location of the bolt holes, positive in tension, negative in compression, kips (N)
- \(P_c\) = available axial strength for the limit state of tensile rupture of the net section at the location of bolt holes, kips (N)
- \(M_{rx}\) = required flexural strength at the location of the bolt holes; positive for tension in the flange under consideration, negative for compression, kip-in. (N-mm)
- \(M_{cx}\) = available flexural strength about \(x\)-axis for the limit state of tensile rupture of the flange, determined according to Section F13.1. When the limit state of tensile rupture in flexure does not apply, use the plastic bending moment, \(M_p\), determined with bolt holes not taken into consideration, kip-in. (N-mm)

For design according to Section B3.3 (LRFD):

- \(P_r\) = required axial strength using LRFD load combinations, kips (N)
- \(P_c\) = resistance factor for tensile rupture = 0.75
- \(P_c = \phi_t P_n\) = design axial strength for the limit state of tensile rupture, determined in accordance with Section D2(b), kips (N)
- \(M_{rx}\) = required flexural strength using LRFD load combinations, kip-in. (N-mm)
- \(M_{cx}\) = resistance factor for flexure = 0.90
- \(M_{cx} = \phi_b M_n\) = design flexural strength determined in accordance with Section F13.1 or the plastic bending moment, \(M_p\), determined with bolt holes not taken into consideration, as applicable, kip-in. (N-mm)
For design according to Section B3.4 (ASD):

\[P_r = \text{required axial strength using } ASD \text{ load combinations, kips (N)} \]
\[P_c = \frac{P_n}{\Omega_t} = \text{allowable axial strength for the limit state of tensile rupture, determined in accordance with Section D2(b), kips (N)} \]
\[M_{rx} = \text{required flexural strength using ASD load combinations, kip-in. (N-mm)} \]
\[M_{cx} = \frac{M_n}{\Omega_b} = \text{allowable flexural strength determined in accordance with Section F13.1, or the plastic bending moment, } M_p, \text{ determined with bolt holes not taken into consideration, as applicable, kip-in. (N-mm)} \]
\[\Omega_t = \text{safety factor for tensile rupture} = 2.00 \]
\[\Omega_b = \text{safety factor for flexure} = 1.67 \]
This chapter addresses composite members composed of rolled or built-up structural steel shapes or HSS and structural concrete acting together, and steel beams supporting a reinforced concrete slab so interconnected that the beams and the slab act together to resist bending. Simple and continuous composite beams with steel headed stud anchors and concrete-encased beams, constructed with or without temporary shores, are included.

The chapter is organized as follows:

I. General Provisions
II. Axially Loaded Members
III. Flexural Members
IV. Combined Axial Force and Flexure
V. Load Transfer
VI. Composite Diaphragms and Collector Beams
VII. Steel Anchors
VIII. Special Cases

II. GENERAL PROVISIONS

In determining load effects in members and connections of a structure that includes composite members, consideration shall be given to the effective sections at the time each increment of load is applied.

I. Concrete and Steel Reinforcement

The design, detailing and material properties related to the concrete and reinforcing steel portions of composite construction shall comply with the reinforced concrete and reinforcing bar design specifications stipulated by the applicable building code. Additionally, the provisions in ACI 318 shall apply with the following exceptions and limitations:

1. ACI 318 Sections 7.8.2 and 10.13, and Chapter 21 shall be excluded in their entirety.

 User Note: It is the intent of the Specification that the concrete and reinforcing steel portions of composite concrete members be detailed utilizing the non-composite provisions of ACI 318 as modified by the Specification. All requirements specific to composite members are covered in the Specification.

2. Concrete and steel reinforcement material limitations shall be as specified in Section 11.3.

3. Concrete and steel reinforcement components designed in accordance with ACI 318 shall be based on a level of loading corresponding to LRFD load combinations. This provision shall also apply to steel headed stud anchors designed in accordance with ACI 318 Appendix D where required by Section 17.3.
(4) Transverse reinforcement limitations shall be as specified in Section I2.1a(2), in addition to those specified in ACI 318.

(5) The minimum longitudinal reinforcing ratio for encased composite members shall be as specified in Section I2.1a(3).

2. Nominal Strength of Composite Sections

The nominal strength of composite sections shall be determined in accordance with the plastic stress distribution method or the strain compatibility method as defined in this section.

The tensile strength of the concrete shall be neglected in the determination of the nominal strength of composite members.

2a. Plastic Stress Distribution Method

For the plastic stress distribution method, the nominal strength shall be computed assuming that steel components have reached a stress of F_y in either tension or compression and concrete components in compression due to axial force and/or flexure have reached a stress of $0.85f'_c$. For round HSS filled with concrete, a stress of $0.95f'_c$ is permitted to be used for concrete components in compression due to axial force and/or flexure to account for the effects of concrete confinement.

2b. Strain Compatibility Method

For the strain compatibility method, a linear distribution of strains across the section shall be assumed, with the maximum concrete compressive strain equal to 0.003 in./in. (mm/mm). The stress-strain relationships for steel and concrete shall be obtained from tests or from published results for similar materials.

User Note: The strain compatibility method should be used to determine nominal strength for irregular sections and for cases where the steel does not exhibit elasto-plastic behavior. General guidelines for the strain compatibility method for encased members subjected to axial load, flexure or both are given in AISC Design Guide 6 and ACI 318.

3. Material Limitations

For concrete, structural steel and steel reinforcing bars in composite systems, the following limitations shall be met, unless justified by testing or analysis:

(1) For the determination of the available strength, concrete shall have a compressive strength f'_c of not less than 3 ksi (21 MPa) nor more than 10 ksi (70 MPa) for normal weight concrete and not less than 3 ksi (21 MPa) nor more than 6 ksi (42 MPa) for lightweight concrete.

User Note: Higher strength concrete material properties may be
(2) The specified minimum yield stress of structural steel and reinforcing bars used in calculating the strength of composite members shall not exceed 75 ksi (525 MPa).

4. Limitations on Filled Composite Sections for Local Buckling

For filled composite sections, the following limitations shall be met:

(1) For filled sections with wall slenderness below the λ_p local buckling limits in Table I1.1, the axial and bending strength shall be based on the plastic capacity of the section or an elastic stress superposition method for flexure as defined in Section I3.3a(a).

(2) For filled sections having wall slenderness between λ_p and λ_r, the cross-sectional strength shall be taken as a linear interpolation between the plastic capacity (λ_p) and that at first yield (λ_r). The capacity at first yield shall be calculated based on assuming an elastic stress distribution for the compression block with the concrete compressive stress at $0.70f'_c$ and the extreme steel fiber in tension at yield.

(3) For filled sections with slenderness larger than λ_r, the strength shall be calculated based on an elastic distribution but with the steel compressive stress limited to the critical stress given below:

(a) For uniform compression in flanges of rectangular filled sections:

When $3 \sqrt{\frac{E}{F_y}} \leq b / t \leq 7 \sqrt{\frac{E}{F_y}}$

$$F_{cr} = 9 \frac{E}{(b/t)^2}$$

(II-1)

(b) For uniform compression in round filled sections:

When $0.19 \frac{E}{F_y} \leq D/t \leq 0.78 \frac{E}{F_y}$

$$F_{cr} = 0.7 \frac{F_y}{[(D/t)(F_y/E)]^{0.2}}$$

(II-2)

(c) For flexure in round filled sections:

When $D/t \geq 0.39 \frac{E}{F_y}$

$$F_{cr} = 0.39 \frac{E}{(D/t)}$$

(II-3)
TABLE I1.1

Limiting Width-Thickness Ratios for Composite Compression Elements

<table>
<thead>
<tr>
<th>Section</th>
<th>Width-Thickness Ratio</th>
<th>(\lambda_p) (Compact)</th>
<th>(\lambda_r) (Noncompact)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform compression in flanges of rectangular filled HSS</td>
<td>(h/t)</td>
<td>2.26 ((E/F_y)^{0.5})</td>
<td>3.00 ((E/F_y)^{0.5})</td>
</tr>
<tr>
<td>Flexure in webs of rectangular filled HSS</td>
<td>(h/t)</td>
<td>3.00 ((E/F_y)^{0.5})</td>
<td>7.00 ((E/F_y)^{0.5})</td>
</tr>
<tr>
<td>Uniform compression in round filled sections</td>
<td>(D/t)</td>
<td>0.15 (E/F_y)</td>
<td>0.19 (E/F_y)</td>
</tr>
<tr>
<td>Flexure in round filled sections</td>
<td>(D/t)</td>
<td>0.09 (E/F_y)</td>
<td>0.39 (E/F_y)</td>
</tr>
</tbody>
</table>

12. AXIALLY LOADED MEMBERS

This section shall apply to two types of composite axially loaded members: encased composite members and filled composite members.

1. Encased Composite Members

1a. Limitations

For encased composite members, the following limitations shall be met:

(1) The cross-sectional area of the steel core shall comprise at least 1% of the total composite cross section.

(2) Concrete encasement of the steel core shall be reinforced with continuous longitudinal bars and lateral ties or spirals. Where lateral ties are used, a minimum of either a No. 3 (10 mm) bar spaced at a maximum of 12 in. (305 mm) on center, or a No. 4 (13 mm) bar or larger spaced at a maximum of 16 in. (406 mm) on center shall be used. Deformed wire or welded wire reinforcement of equivalent area are permitted. Maximum spacing of lateral ties shall not exceed 0.5 times the least column dimension.

(3) The minimum reinforcement ratio for continuous longitudinal reinforcing, \(\rho_{sr} \), shall be 0.004, where \(\rho_{sr} \) is given by:

\[
\rho_{sr} = \frac{A_s}{A_g}
\]

where

\(A_s = \) area of continuous reinforcing bars, in.\(^2\) (mm\(^2\))

\(A_g = \) gross area of composite member, in.\(^2\) (mm\(^2\))

User Note: Refer to Sections 7.10 and 10.9.3 of ACI 318 for additional tie and spiral reinforcing provisions.

Specification for Structural Steel Buildings, Public Review Draft dated March 1, 2009

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1b. Compressive Strength

The design compressive strength, $\phi_c P_n$, and allowable compressive strength, P_n/Ω_c, of axially loaded encased composite members shall be determined for the limit state of flexural buckling based on member slenderness as follows:

$$\phi_c = 0.75 \text{ (LRFD)} \quad \Omega_c = 2.00 \text{ (ASD)}$$

(a) When $\frac{P_{no}}{P_e} \leq 2.25$

$$P_n = P_{no} \left[\frac{P_{no}}{0.658 P_e} \right]$$

(b) When $\frac{P_{no}}{P_e} > 2.25$

$$P_n = 0.877 P_e$$

where

$$P_{no} = A_s F_y + A_{syr} F_{y, sr} + 0.85 A_c f'_c$$

$$P_e = \frac{\pi^2 (EI_{eff})}{(KL)^2}$$

$$A_c = \text{area of concrete, in.}^2 \text{ (mm}^2\text{)}$$

$$A_s = \text{area of the steel section, in.}^2 \text{ (mm}^2\text{)}$$

$$E_c = \text{modulus of elasticity of concrete} = w_c^{1.5} \sqrt{f'_c}, \text{ ksi}$$

$$EI_{eff} = \text{effective stiffness of composite section, kip-in.}^2 \text{ (N-mm}^2\text{)}$$

$$C_1 = \text{coefficient for calculation of effective rigidity of an encased composite compression member}$$

$$C_1 = 0.1 + 2 \left(\frac{A_s}{A_c + A_s} \right) \leq 0.3$$

$$E_s = \text{modulus of elasticity of steel} = 29,000 \text{ ksi (210 MPa)}$$

$$f'_c = \text{specified compressive strength of concrete, ksi (MPa)}$$

$$F_y = \text{specified minimum yield stress of steel section, ksi (MPa)}$$

$$F_{y, sr} = \text{specified minimum yield stress of reinforcing bars, ksi (MPa)}$$

$$I_c = \text{moment of inertia of the concrete section about the plastic centroid of the composite section, in.}^4 \text{ (mm}^4\text{)}$$
The available compressive strength need not be less than that specified for the bare steel member as required by Chapter E.

User Note: Equations I2-6 and I2-10 were developed based on a data base of symmetric composite sections. See commentary for guidelines.

1c. Tensile Strength

The available tensile strength of axially loaded encased composite members shall be determined for the limit state of yielding as follows:

\[P_u = A_f F_y + A_{sr} F_{ysr} \] \hspace{1cm} (I2-8)

\[\phi_t = 0.90 \text{ (LRFD)} \quad \Omega_t = 1.67 \text{ (ASD)} \]

1d. Shear Strength

The available shear strength shall be calculated based on one of the following:

(a) The shear strength of the steel section alone as specified in Chapter G.

\[\phi_v = 0.75 \text{ (LRFD)} \quad \Omega_v = 2.00 \text{ (ASD)} \]

(b) The shear strength of the reinforced concrete portion (concrete plus steel reinforcement) alone as defined by ACI 318 with

(c) The shear strength of the steel section as defined in Section G plus the reinforcing steel as defined by ACI 318 with

\[\phi_v = 0.75 \text{ (LRFD)} \quad \Omega_v = 2.00 \text{ (ASD)} \]

User Note: The shear capacity of reinforced concrete may be determined in accordance with ACI 318, Chapter 11.

1e. Load Transfer

Load transfer requirements for encased composite members shall be determined in accordance with Section I5.
1f. Detailing Requirements

Clear spacing between the steel core and longitudinal reinforcing shall be a minimum of 1.5 reinforcing bar diameters, but not less than 1.5 in. (38 mm).

If the composite cross section is built up from two or more encased steel shapes, the shapes shall be interconnected with *lacing, tie plates, batten plates* or similar components to prevent buckling of individual shapes due to loads applied prior to hardening of the concrete.

2. Filled Composite Members

2a. Limitations

For filled composite members, the cross-sectional area of the steel section shall comprise at least 1% of the total composite cross section.

2b. Compressive Strength

The available compressive strength of axially loaded filled composite members shall be determined for the *limit state* of flexural buckling in accordance with Section I2.1b with the following modifications:

For filled sections with slenderness less than or equal to \(\lambda_p \)

\[
P_{no} = A_s f' + A_{sr} f' + C_2 A'_c f'_c
\]
(I2-9a)

For filled sections with wall slenderness greater than or equal to \(\lambda_r \)

\[
P_{no} = A_s F_{cr} + 0.7 f'_c (A_c + A_{sr} E_s E_c)
\]
(I2-9b)

where

- \(\lambda_p \) and \(\lambda_r \) are defined in Table I1.1
- \(C_2 = 0.85 \) for rectangular sections and 0.95 for round sections
- \(E I_{eff} = E_s I_s + E_{sr} I_{sr} + C_3 E_c I_c \)
(I2-10)

- \(C_3 \) = coefficient for calculation of effective rigidity of a filled composite compression member
 \[
 = 0.6 + 2 \left(\frac{A_i}{A_s + A_c} \right) \leq 0.9
 \]
(I2-11)

- \(F_{cr} \) is obtained using Equations I1-1 to I1-3

Linear interpolation between \(P_{no} \) from Equations I2-9a and I2-9b shall be used for sections with wall slenderness between \(\lambda_p \) and \(\lambda_r \).

146
The available compressive strength need not be less than specified for the bare steel member as required by Chapter E.

2c. Tensile Strength

The available tensile strength of axially loaded filled composite members shall be determined for the limit state of yielding as follows:

\[P_a = A_y F_y + A_{xx} F_{yy} \] (12-12)

\[\phi_t = 0.90 \text{ (LRFD)} \quad \Omega_t = 1.67 \text{ (ASD)} \]

2d. Shear Strength

The available shear strength shall be determined based on one of the following:

1. The shear strength of the steel section alone as specified in Chapter G.

2. The shear strength of the reinforced concrete portion (concrete plus steel reinforcement) alone as defined by ACI 318 with

 \[\phi_v = 0.75 \text{ (LRFD)} \quad \Omega_v = 2.00 \text{ (ASD)} \]

3. The shear strength of the steel section as defined in Section G plus the reinforcing steel as defined by ACI 318 with

 \[\phi_v = 0.75 \text{ (LRFD)} \quad \Omega_v = 2.00 \text{ (ASD)} \]

User Note: The shear strength of reinforced concrete may be determined by ACI 318, Chapter 11.

2e. Load Transfer

Load transfer requirements for filled composite members shall be determined in accordance with Section I5.

13. FLEXURAL MEMBERS

This section applies to three types of composite flexural members: composite beams with steel anchors consisting of steel headed stud anchors or steel channel anchors, concrete-encased members, and filled members.

1. General

1a. Effective Width

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
The effective width of the concrete slab shall be the sum of the effective widths for each side of the beam centerline, each of which shall not exceed:

1. one-eighth of the beam span, center-to-center of supports;
2. one-half the distance to the centerline of the adjacent beam; or
3. the distance to the edge of the slab.

1b. Strength during Construction

When temporary shores are not used during construction, the steel section alone shall have adequate strength to support all loads applied prior to the concrete attaining 75% of its specified strength $f_{c}^{'}$. The available flexural strength of the steel section shall be determined in accordance with Chapter F.

2. Composite Beams with Steel Headed Stud or Steel Channel Anchors

2a. Positive Flexural Strength

The available positive flexural strength shall be determined for the limit state of yielding as follows:

\[\phi_{b} = 0.90 \quad \text{(LRFD)} \]
\[\Omega_{b} = 1.67 \quad \text{(ASD)} \]

(a) When \[h / t_{w} \leq 3.76 / y_{EF} \]

\[M_{n} \] shall be determined from the plastic stress distribution on the composite section for the limit state of yielding (plastic moment).

User Note: All current ASTM A6 W, S and HP shapes satisfy the limit given in Section 13.2a(a) for $F_{y} \leq 50$ ksi (345 MPa).

(b) When \[h / t_{w} > 3.76 / y_{EF} \]

\[M_{n} \] shall be determined from the superposition of elastic stresses, considering the effects of shoring, for the limit state of yielding (yield moment).

2b. Negative Flexural Strength

The available negative flexural strength shall be determined for the steel section alone, in accordance with the requirements of Chapter F.

Alternatively, the available negative flexural strength shall be
determined from the plastic stress distribution on the composite section, for the limit state of yielding (plastic moment), with

$$\phi_b = 0.90 \text{ (LRFD)} \quad \Omega_b = 1.67 \text{ (ASD)}$$

provided that the following limitations are met:

1. The steel beam is compact and is adequately braced in accordance with Chapter F.
2. Steel headed stud or steel channel anchors connect the slab to the steel beam in the negative moment region.
3. The slab reinforcement parallel to the steel beam, within the effective width of the slab, is properly developed.

2c. Composite Beams with Formed Steel Deck

1. General

 The available flexural strength of composite construction consisting of concrete slabs on formed steel deck connected to steel beams shall be determined by the applicable portions of Section I3.2a and I3.2b, with the following requirements:

 1. The nominal rib height shall not be greater than 3 in. (75 mm). The average width of concrete rib or haunch, \(w_r\), shall be not less than 2 in. (50 mm), but shall not be taken in calculations as more than the minimum clear width near the top of the steel deck.

 2. The concrete slab shall be connected to the steel beam with welded steel headed stud anchors, \(\frac{3}{4}\) in. (19 mm) or less in diameter (AWS D1.1). Steel headed stud anchors shall be welded either through the deck or directly to the steel cross section. Steel headed stud anchors, after installation, shall extend not less than \(\frac{1}{2}\) in. (38 mm) above the top of the steel deck and there shall be at least \(\frac{1}{2}\) in. (13 mm) of concrete cover above the top of the installed steel headed stud anchors prior to the placement of concrete.

 3. The slab thickness above the steel deck shall be not less than 2 in. (50 mm).

 4. Steel deck shall be anchored to all supporting members at a spacing not to exceed 18 in. (460 mm). Such anchorage shall be provided by steel headed stud anchors, a combination of steel headed stud anchors and arc spot (puddle) welds, or other devices specified by the contract documents.
(2) Deck Ribs Oriented Perpendicular to Steel Beam

Concrete below the top of the steel deck shall be neglected in determining composite section properties and in calculating \(A_c \) for deck ribs oriented perpendicular to the steel beams.

(3) Deck Ribs Oriented Parallel to Steel Beam

Concrete below the top of the steel deck is permitted to be included in determining composite section properties and shall be included in calculating \(A_c \).

Formed steel deck ribs over supporting beams is permitted to be split longitudinally and separated to form a concrete haunch.

When the nominal depth of steel deck is 1½ in. (38 mm) or greater, the average width, \(w_r \), of the supported haunch or rib shall be not less than 2 in. (50 mm) for the first steel headed stud anchor in the transverse row plus four stud diameters for each additional steel headed stud anchor.

2d. Load Transfer between Steel Beam and Concrete Slab

(1) Load Transfer for Positive Flexural Strength

The entire horizontal shear at the interface between the steel beam and the concrete slab shall be assumed to be transferred by steel headed stud or steel channel anchors, except for concrete-encased beams as defined in Section I3.3. For composite action with concrete subject to flexural compression, the total horizontal shear force, \(V'_r \), between the point of maximum positive moment and the point of zero moment shall be determined as the lowest value in accordance with the limit states of concrete crushing, tensile yielding of the steel section, or the shear strength of the steel anchors:

(a) Concrete crushing

\[
V'_r = 0.85f'_c A_c \quad (I3-1a)
\]

(b) Tensile yielding of the steel section

\[
V'_r = F_y A_s \quad (I3-1b)
\]

(c) Shear strength of steel headed stud or steel channel anchors

\[
V'_r = \Sigma Q_n \quad (I3-1c)
\]

where

\[
A_c = \text{area of concrete slab within effective width, in.}^2 (\text{mm}^2)
\]
As = area of steel cross section, in.² (mm²)

ΣQ_n = sum of nominal shear strengths of steel headed stud or steel channel anchors between the point of maximum positive moment and the point of zero moment, kips (N)

(2) Load Transfer for Negative Flexural Strength

In continuous composite beams where longitudinal reinforcing steel in the negative moment regions is considered to act compositely with the steel beam, the total horizontal shear between the point of maximum negative moment and the point of zero moment shall be determined as the lower value in accordance with the following limit states:

(a) For the limit state of tensile yielding of the slab reinforcement

\[V'_r = A_{sr} F_{ysr} \] \hspace{1cm} \text{(I3-2a)}

where

\[A_{sr} = \text{area of adequately developed longitudinal reinforcing steel within the effective width of the concrete slab, in.² (mm²)} \]

\[F_{ysr} = \text{specified minimum yield stress of the reinforcing steel, ksi (MPa)} \]

(b) For the limit state of shear strength of steel headed stud or steel channel anchors

\[V'_r = \Sigma Q_n \] \hspace{1cm} \text{(I3-2b)}

2e. Shear Strength

The available shear strength of composite beams with steel headed stud or steel channel anchors shall be determined based upon the properties of the steel section alone in accordance with Chapter G.

3. Concrete-Encased and Filled Members

3a. Flexural Strength

The available flexural strength of concrete-encased and filled members shall be determined as follows:

\[\phi_b = 0.90 \text{ (LRFD)} \] \hspace{1cm} \[\Omega_b = 1.67 \text{ (ASD)} \]

The nominal flexural strength, \(M_n \), shall be determined using one of the following methods:

(a) The superposition of elastic stresses on the composite section, considering the effects of shoring for the limit state of yielding (yield moment).
(b) The plastic stress distribution on the steel section alone, for the limit state of yielding (plastic moment) on the steel section.

(c) The plastic stress distribution on the composite section or the strain-compatibility method, for the limit state of yielding (plastic moment) on the composite section. For concrete-encased members, steel anchors shall be provided.

For filled sections, the nominal flexural strength, M_n, shall be determined using F_y or F_{cr} as defined in Section II.4, whichever is applicable.

3b. **Shear Strength**

The available shear strength of concrete-encased and filled composite members shall be determined based upon the properties of the steel section alone in accordance with Chapter G or based upon the shear strength of the reinforced concrete alone.

User Note: The shear strength of the reinforced concrete may be determined in accordance with ACI 318 Chapter 11.

14. COMBINED AXIAL FORCE AND FLEXURE

For composite members with wall slenderness (b/t or D/t) less than or equal to λ_p, the interaction between axial forces and flexure in composite members shall be based on the interaction equations of Section H1.1 or one of the methods as defined in Section II.2. For filled sections with wall slenderness (b/t or D/t) greater than λ_p, the interaction between axial forces and flexure shall be based on the interaction equations of Section H1.1. The interaction between axial forces and flexure in composite members shall account for stability as required by Chapter C. The *available compressive strength* and the *available flexural strength* shall be determined as defined in Sections I2 and I3, respectively. To account for the influence of length effects on the axial strength of the member, the nominal axial strength of the member shall be determined in accordance with Section I2.

User Note: Methods for determining the capacity of composite beam-columns can be found in the Commentary.

15. LOAD TRANSFER

1. **General Requirements**

 When external forces are applied to an axially loaded encased or filled...
composite member, the introduction of force to the member and the transfer of longitudinal shears within the member shall be assessed in accordance with the requirements for load allocation presented in this section.

The design strength, \(\phi R_n \), or the allowable strength, \(R_n/\Omega \), of the applicable force transfer mechanisms as determined in accordance with Section I5.3 shall equal or exceed the required longitudinal shear force to be transferred, \(V'_r \), as determined in accordance with Section I5.2.

2. Load Allocation

Load allocation shall be determined based upon the distribution of external load in accordance with the following requirements:

User Note: Bearing strength provisions for externally applied forces are located in Section J8. For filled composite members, the term \(\sqrt{A_e/A} \) in Equation J8-2 may be taken equal to 2.0 due to confinement effects.

2a. External Force Applied to Steel Section

When the entire external force is applied directly to the steel section, the force required to be transferred to the concrete, \(V'_r \), shall be determined as follows:

\[
V'_r = P_r \left(\frac{1 - A_e F_y}{P_{no}} \right) \tag{I5-1}
\]

where

- \(P_r = \) external design force applied to the composite member, kips (N)
- \(P_{no} = \) nominal axial compressive strength without consideration of length effects, determined by Equation I2-4, kips (N)

2b. External Force Applied to Concrete

When the entire external force is applied directly to the concrete encasement or concrete fill, the force required to be transferred to the steel, \(V'_r \), shall be determined as follows:

\[
V'_r = P_r \left(\frac{A_e F_y}{P_{no}} \right) \tag{I5-2}
\]

2c. External Force Applied Concurrently to Steel and Concrete

When the external force is applied concurrently to the steel section and concrete encasement or concrete fill, \(V'_r \) shall be determined as the force required to establish equilibrium of the cross section.

User Note: The Commentary provides an acceptable method of
determining the longitudinal shear force required for equilibrium of the cross section.

3. Force Transfer Mechanisms

The nominal strength, R_n, of the force transfer mechanisms of direct bond interaction, shear connection, and direct bearing shall be determined in accordance with this section. Use of the force transfer mechanism providing the largest nominal strength is permitted. Force transfer mechanisms shall not be superimposed.

The force transfer mechanism of direct bond interaction shall not be used for encased composite members.

3a. Direct Bearing

Where load is transferred in an encased or filled composite member by direct bearing from internal bearing mechanisms, the available bearing strength of the concrete for the limit state of concrete crushing shall be determined as follows:

$$R_n = 1.7f'cA_1$$

where

$$A_1 = \text{loaded area of concrete, in.}^2 (\text{mm}^2)$$

User Note: An example of force transfer via an internal bearing mechanism is the use of internal steel plates within a filled composite member.

3b. Shear Connection

Where load is transferred in an encased or filled composite member by shear connection, the available shear strength of steel headed stud or steel channel anchors shall be determined as follows:

$$R_n = \sum Q_{cv}$$

where

$$\sum Q_{cv} = \text{sum of available shear strengths of steel headed stud or steel channel anchors, determined in accordance with Section 17.3, placed within the load introduction length as defined in Section 15.4, kips (N)}.$$

3c. Direct Bond Interaction
Where load is transferred in a filled composite member by direct bond interaction, the available bond strength between the steel and concrete shall be determined as follows:

\[
\phi = 0.45 \text{ (LRFD)} \quad \Omega = 3.33 \text{ (ASD)}
\]

For rectangular steel sections filled with concrete:

\[
R_n = b^2 C_{in} F_{in} \quad \text{(15-5)}
\]

For round steel sections filled with concrete:

\[
R_n = 0.25 \pi D^2 C_{in} F_{in} \quad \text{(15-6)}
\]

where

\[
C_{in} = 2 \text{ if the filled composite member extends to one side of the point of load transfer}
\]
\[
= 4 \text{ if the filled composite member extends either side of the point of load transfer}
\]

\[
R_n = \text{nominal bond strength, kips (N)}
\]

\[
F_{in} = \text{nominal bond stress} = 0.06 \text{ ksi (0.40 MPa)}
\]

\[
b = \text{width of rectangular steel section along face transferring load, in. (mm)}
\]

\[
D = \text{diameter of round steel section, in. (mm)}
\]

4. Detailing Requirements

4a. Encased Composite Members

Steel anchors utilized to transfer longitudinal shear shall be distributed within the load introduction length, which shall not exceed a distance of two times the minimum transverse dimension of the encased composite member above and below the load transfer region. Anchors utilized to transfer longitudinal shear shall be placed on at least two faces of the steel shape in a generally symmetric configuration about the steel shape axes.

Steel anchor spacing, both within and outside of the load introduction length, shall conform to I7.3e.

4b. Filled Composite Members

Where required, steel anchors transferring the required longitudinal shear force shall be distributed within the load introduction length, which shall not exceed a distance of two times the minimum transverse dimension of a rectangular steel member or two times the diameter of a round steel member both above and below the load transfer region.
Steel anchor spacing within the load introduction length shall conform to Section I7.3e.

16. COMPOSITE DIAPHRAGMS AND COLLECTOR BEAMS

Composite slab diaphragms and collector beams shall be designed and detailed to transfer loads between the diaphragm, the diaphragm’s boundary members and collector elements, and elements of the lateral-load-resisting-system.

User Note: Design guidelines for composite diaphragms and collector beams can be found in the commentary.

17. STEEL ANCHORS

1. General

The diameter of a steel headed stud anchor shall not be greater than 2.5 times the thickness of the base metal to which it is welded, unless it is welded to a flange directly over a web.

Section I7.2 applies for a composite flexural member where steel anchors are embedded in a solid concrete slab or in a slab cast on formed steel deck. Section I7.3 applies for all other cases.

2. Steel Anchors in Composite Beams

The length of steel headed stud anchors shall not be less than four stud diameters from the base of the steel headed stud anchor to the top of the stud head after installation.

2a. Strength of Steel Headed Stud Anchors

The nominal shear strength of one steel headed stud anchor embedded in a solid concrete slab or in a composite slab with decking shall be determined as follows:

\[
Q_n = 0.5A_{sc} \sqrt{f'_c} \leq R_g R_p A_{sc} F_u
\]

(17-1)

where

- \(A_{sc}\) = cross-sectional area of steel headed stud anchor, in.\(^2\) (mm\(^2\))
- \(E_c\) = modulus of elasticity of concrete = \(\omega^{3.5} \sqrt{f'_c}\), ksi (MPa)
- \(F_u\) = specified minimum tensile strength of a steel headed stud anchor, ksi (MPa)
- \(R_g\) = 1.0 for:
(a) one steel headed stud anchor welded in a steel deck rib with the deck oriented perpendicular to the steel shape;
(b) any number of steel headed stud anchors welded in a row directly to the steel shape;
(c) any number of steel headed stud anchors welded in a row through steel deck with the deck oriented parallel to the steel shape and the ratio of the average rib width to rib depth ≥ 1.5

$= 0.85$ for:
(a) two steel headed stud anchors welded in a steel deck rib with the deck oriented perpendicular to the steel shape;
b) one steel headed stud anchor welded through steel deck with the deck oriented parallel to the steel shape and the ratio of the average rib width to rib depth ≤ 1.5

$= 0.7$ for three or more steel headed stud anchors welded in a steel deck rib with the deck oriented perpendicular to the steel shape

$R_p = 0.75$ for:
(a) steel headed stud anchors welded directly to the steel shape;
b) steel headed stud anchors welded in a composite slab with the deck oriented perpendicular to the beam and $e_{mid-ht} \geq 2$ in. (50 mm);
c) steel headed stud anchors welded through steel deck, or steel sheet used as girder filler material, and embedded in a composite slab with the deck oriented parallel to the beam

$= 0.6$ for steel headed stud anchors welded in a composite slab with deck oriented perpendicular to the beam and $e_{mid-ht} < 2$ in. (50 mm)

e_{mid-ht} = distance from the edge of steel headed stud anchor shank to the steel deck web, measured at mid-height of the deck rib, and in the load bearing direction of the steel headed stud anchor (in other words, in the direction of maximum moment for a simply supported beam), in. (mm)

User Note: The table below presents values for R_g and R_p for several cases. Capacities for steel headed stud anchors can be found in the Manual.

<table>
<thead>
<tr>
<th>Condition</th>
<th>R_g</th>
<th>R_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>No decking</td>
<td>1.0</td>
<td>0.75</td>
</tr>
<tr>
<td>Decking oriented parallel to the steel shape</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{w_r}{h_r} \geq 1.5$</td>
<td>1.0</td>
<td>0.75</td>
</tr>
<tr>
<td>$\frac{w_r}{h_r} < 1.5$</td>
<td>0.85**</td>
<td>0.75</td>
</tr>
<tr>
<td>Decking oriented perpendicular</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specification for Structural Steel Buildings, Public Review Draft dated March 1, 2009

American Institute of Steel Construction
to the steel shape
Number of steel headed stud anchors occupying the same decking rib

<table>
<thead>
<tr>
<th></th>
<th>1.0</th>
<th>0.6⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.85</td>
<td>0.6⁺</td>
</tr>
<tr>
<td>2</td>
<td>0.7</td>
<td>0.6⁺</td>
</tr>
<tr>
<td>3 or more</td>
<td>0.6⁺</td>
<td></td>
</tr>
</tbody>
</table>

\[h_r = \text{nominal rib height, in. (mm)} \]
\[w_r = \text{average width of concrete rib or haunch (as defined in Section I3.2c), in. (mm)} \]

** for a single steel headed stud anchor

⁺ this value may be increased to 0.75 when \(e_{\text{mid-h}} \geq 2 \text{ in. (51 mm)} \)

2b. Strength of Steel Channel Anchors

The nominal shear strength of one hot-rolled channel anchor embedded in a solid concrete slab shall be determined as follows:

\[
Q_n = 0.3(t_f + 0.5t_w)l_c \sqrt{f'_c/\gamma_c} \quad (17-2)
\]

where

\[t_f = \text{flange thickness of channel anchor, in. (mm)} \]
\[t_w = \text{web thickness of channel anchor, in. (mm)} \]
\[l_c = \text{length of channel anchor, in. (mm)} \]

The strength of the channel anchor shall be developed by welding the channel to the beam flange for a force equal to \(Q_n \), considering eccentricity on the anchor.

2c. Required Number of Steel Anchors

The number of anchors required between the section of maximum bending moment, positive or negative, and the adjacent section of zero moment shall be equal to the horizontal shear as determined in Sections I3.2d(1) and I3.2d(2) divided by the nominal shear strength of one steel anchor as determined from Section I7.2a or Section I7.2b. The number of steel anchors required between any concentrated load and the nearest point of zero moment shall be sufficient to develop the maximum moment required at the concentrated load point.

2d. Detailing Requirements

Steel anchors required on each side of the point of maximum bending moment, positive or negative, shall be distributed uniformly between that point and the adjacent points of zero moment, unless specified
Steel anchors shall have at least 1 in. (25 mm) of lateral concrete cover in the direction perpendicular to the shear force, except for anchors installed in the ribs of formed steel decks. The minimum distance from the center of an anchor to a free edge in the direction of the shear force shall be 8 in. (203 mm) if normal weight concrete is used and 10 in. (250 mm) if lightweight concrete is used. The provisions of ACI 318 Appendix D are permitted to be used in lieu of these values.

The minimum center-to-center spacing of steel headed stud anchors shall be six diameters along the longitudinal axis of the supporting composite beam and four diameters transverse to the longitudinal axis of the supporting composite beam, except that within the ribs of formed steel decks oriented perpendicular to the steel beam the minimum center-to-center spacing shall be four diameters in any direction. The maximum center-to-center spacing of steel anchors shall not exceed eight times the total slab thickness or 36 in (900 mm).

3. Steel Anchors in Composite Components

This section shall apply to the design of steel headed stud anchors in composite components.

For normal weight concrete: Steel headed stud anchors subjected to shear only shall not be less than five stud diameters in length from the base of the steel headed stud to the top of the stud head after installation. Steel headed stud anchors subjected to tension or interaction of shear and tension shall not be less than eight stud diameters in length from the base of the stud to the top of the stud head after installation.

For lightweight concrete: Steel headed stud anchors subjected to shear only shall not be less than seven stud diameters in length from the base of the steel headed stud to the top of the stud head after installation. Steel headed stud anchors subjected to tension shall not be less than ten stud diameters in length from the base of the stud to the top of the stud head after installation. The nominal strength of steel headed stud anchors subjected to interaction of shear and tension for lightweight concrete shall be determined as stipulated by the applicable building code or ACI 318 Appendix D.

Steel headed stud anchors subjected to tension or interaction of shear and tension shall have a diameter of the head greater than or equal to 1.6 times the diameter of the shank.

User Note: The steel anchor strength provisions in this section are applicable to composite components such as composite columns (including load transfer regions), concrete-encased and filled composite beams, composite beam-columns, coupling beams, and composite walls. Section 17.2 specifies the strength of steel anchors embedded in...
a solid concrete slab or in a concrete slab with formed steel deck in a composite beam.

3a. Shear Strength of Steel Headed Stud Anchors in Composite Components

Where the distance from the center of an anchor to a free edge of concrete in the direction perpendicular to the height of the steel headed stud anchor is greater than or equal to 1.5 times the height of the steel headed stud anchor measured to the top of the stud head, the nominal shear strength of one steel headed stud anchor shall be determined as follows:

\[
Q_{nv} = A_{sc} F_u
\]

\[
\phi_s = 0.65 \text{ (LRFD)} \quad \Omega_s = 2.31 \text{ (ASD)}
\]

where

- \(Q_{nv}\) = nominal shear strength of steel headed stud anchor, kips (N)
- \(A_{sc}\) = cross-sectional area of steel headed stud anchor, in.\(^2\) (mm\(^2\))
- \(F_u\) = specified minimum tensile strength of a steel headed stud anchor, ksi (MPa)

Where the distance from the center of an anchor to a free edge of concrete in the direction perpendicular to the height of the steel headed stud anchor is less than 1.5 times the height of the steel headed stud anchor measured to the top of the stud head, the nominal shear strength of one steel headed stud anchor shall be determined in accordance with ACI 318 Appendix D.

3b. Tensile Strength of Steel Headed Stud Anchors in Composite Components

Where the distance from the center of an anchor to a free edge of concrete in the direction perpendicular to the height of the steel headed stud anchor is greater than or equal to 1.5 times the height of the steel headed stud anchor measured to the top of the stud head, and where the center-to-center spacing of steel headed stud anchors is greater than or equal to three times the height of the steel headed stud anchor measured to the top of the stud head, the nominal tensile strength of one steel headed stud anchor shall be determined as follows:

\[
Q_{nt} = A_{sc} F_u
\]

\[
\phi_s = 0.75 \text{ (LRFD)} \quad \Omega_s = 2.00 \text{ (ASD)}
\]

where

- \(Q_{nt}\) = nominal tensile strength of steel headed stud anchor, kips (N) (mm\(^2\))
Where the distance from the center of an anchor to a free edge of concrete in the direction perpendicular to the height of the steel headed stud anchor is less than 1.5 times the height of the steel headed stud anchor measured to the top of the stud head, or where the center-to-center spacing of steel headed stud anchors is less than three times the height of the steel headed stud anchor measured to the top of the stud head, the nominal tensile strength of one steel headed stud anchor shall be determined by one of the following:

1) Where anchor reinforcement is developed in accordance with Chapter 12 of ACI 318 on opposite sides of the concrete breakout surface for the steel headed stud anchor, the minimum of the steel nominal tensile strength from Eq. I7-4 and the nominal strength of the anchor reinforcement shall be used for the nominal tensile strength, \(Q_{nt} \), of the steel headed stud anchor.

2) As stipulated by the applicable building code or ACI 318 Appendix D.

User Note: Supplemental confining reinforcement is recommended around the anchors for steel headed stud anchors subjected to tension or interaction of shear and tension to avoid edge effects or effects from closely spaced anchors. See the Commentary and ACI 318 Section D5.2.9 for guidelines.

3c. Strength of Steel Headed Stud Anchors for Interaction of Shear and Tension in Composite Components

Where the distance from the center of an anchor to a free edge of concrete in the direction perpendicular to the height of the steel headed stud anchor is greater than or equal to 1.5 times the height of the steel headed stud anchor measured to the top of the stud head, and where the center-to-center spacing of steel headed stud anchors is greater than or equal to three times the height of the steel headed stud anchor measured to the top of the stud head, the nominal strength for interaction of shear and tension of one steel headed stud anchor shall be determined as follows:

\[
\left(\frac{Q_{rt}}{Q_{ct}} \right)^{5/3} + \left(\frac{Q_{rv}}{Q_{cv}} \right)^{5/3} \leq 1.0
\]

(I7-5)

Where:

- \(Q_{rt} \) = required tensile strength, kips (N)
- \(Q_{ct} \) = available tensile strength, kips (N)
- \(Q_{rv} \) = required shear strength, kips (N)
- \(Q_{cv} \) = available shear strength, kips (N)

For design in accordance with Section B3.3 (LRFD):

\[
Q_r = \text{required tensile strength using LRFD load combinations}, \text{ kips (N)}
\]
\(Q_{ct} = \phi_t Q_{nt} \) = design tensile strength, determined in accordance with Section 17.3b, kips (N)

\(Q_{cr} \) = required shear strength using LRFD load combinations, kips (N)

\(Q_{cv} = \phi_v Q_{nv} \) = design shear strength, determined in accordance with Section 17.3a, kips (N)

\(\phi_t \) = resistance factor for tension = 0.75

\(\phi_v \) = resistance factor for flexure = 0.65

For design in accordance with Section B3.4 (ASD):

\(Q_{ct} = \text{required tensile strength using ASD load combinations, kips (N)} \)

\(Q_{cr} = Q_{nt}/\Omega_t = \text{allowable tensile strength, determined in accordance with Section 17.3b, kips (N)} \)

\(Q_{cv} = \text{required shear strength using ASD load combinations, kips (N)} \)

\(Q_{cv} = Q_{nv}/\Omega_v = \text{allowable shear strength, determined in accordance with Section 17.3a, kips (N)} \)

\(\Omega_t = \text{safety factor for tension = 2.00} \)

\(\Omega_v = \text{safety factor for flexure = 2.31} \)

Where the distance from the center of an anchor to a free edge of concrete in the direction perpendicular to the height of the steel headed stud anchor is less than 1.5 times the height of the steel headed stud anchor measured to the top of the stud head, or where the center-to-center spacing of steel headed stud anchors is less than three times the height of the steel headed stud anchor measured to the top of the stud head, the nominal strength for interaction of shear and tension of one steel headed stud anchor shall be determined by one of the following:

1) Where anchor reinforcement is developed in accordance with Chapter 12 of ACI 318 on opposite sides of the concrete breakout surface for the steel headed stud anchor, the minimum of the steel nominal tensile strength from Eq. 17-4 and the nominal strength of the anchor reinforcement shall be used for the nominal tensile strength, \(Q_{nt} \), of the steel headed stud anchor for use in Eq. 17-5.

2) As stipulated by the applicable building code or ACI 318 Appendix D.

3d. Shear Strength of Steel Channel Anchors in Composite Components

The provisions of 17.2b apply with the resistance factor and safety factor as specified below.

\(\phi_v = 0.75 \) (LRFD) \(\Omega_v = 2.00 \) (ASD)
3e. Detailing Requirements in Composite Components

Steel anchors shall have at least 1 in. (25 mm) of lateral clear concrete cover. The minimum center-to-center spacing of steel headed stud anchors shall be four diameters in any direction. The maximum center-to-center spacing of steel headed stud anchors shall not exceed 24 times the shank diameter. The maximum center-to-center spacing of steel of channel anchors shall be 24 in. (600 mm).

18. SPECIAL CASES

When composite construction does not conform to the requirements of Section I1 through Section I7, the strength of steel anchors and details of construction shall be established by testing.
CHAPTER J
DESIGN OF CONNECTIONS

This chapter addresses connecting elements, connectors, and the affected elements of the connected members not subject to fatigue loads.

The chapter is organized as follows:

- J2. Welds
- J3. Bolts and Threaded Parts
- J4. Affected Elements of Members and Connecting Elements
- J5. Fillers
- J6. Splices
- J7. Bearing Strength
- J8. Column Bases and Bearing on Concrete
- J9. Anchor Rods and Embedments
- J10. Flanges and Webs with Concentrated Forces

User Note: For cases not included in this chapter, the following sections apply:
- Chapter K. Design of HSS and Box Member Connections
- Appendix 3. Design for Fatigue

J1. GENERAL PROVISIONS

1. Design Basis

The design strength, ϕR_n, and the allowable strength R_n/Ω, of connections shall be determined in accordance with the provisions of this chapter and the provisions of Chapter B.

The required strength of the connections shall be determined by structural analysis for the specified design loads, consistent with the type of construction specified, or shall be a proportion of the required strength of the connected members when so specified herein.

Where the gravity axes of intersecting axially loaded members do not intersect at one point, the effects of eccentricity shall be considered.

2. Simple Connections

Simple connections of beams, girders and trusses shall be designed as
3. Moment Connections

End connections of restrained beams, girders, and trusses shall be designed for the combined effect of forces resulting from moment and shear induced by the rigidity of the connections. Response criteria for moment connections are provided in Section B3.6b.

User Note: See Chapter C and Appendix 7 for analysis requirements to establish the required strength and stiffness for design of connections.

4. Compression Members with Bearing Joints

Compression members with bearing plates shall meet the following requirements:

(a) When columns bear on bearing plates or are finished to bear at splices, there shall be sufficient connectors to hold all parts securely in place.

(b) When compression members other than columns are finished to bear, the splice material and its connectors shall be arranged to hold all parts in line and their required strength shall be the lesser of:

(i) An axial tensile force of 50% of the required compressive strength of the member; or

(ii) The moment and shear resulting from a transverse load equal to 2% of the required compressive strength of the member. The transverse load shall be applied at the location of the splice exclusive of other loads that act on the member. The member shall be taken as pinned for the determination of the shears and moments at the splice.

User Note: All compression joints should also be proportioned to resist any tension developed by the load combinations stipulated in Section B2.

5. Splices in Heavy Sections

When tensile forces due to applied tension or flexure are to be transmitted through splices in heavy sections, as defined in Section A3.1c and A3.1d, by complete-joint-penetration groove (CJP) welds, material notch-toughness requirements as given in Section A3.1c and

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
A3.1d, weld access hole details as given in Section J1.6, filler metal requirements as given in Section J2.6 and thermal cut surface preparation and inspection requirements as given in Section M2.2 shall apply. The foregoing provision is not applicable to splices of elements of built-up shapes that are welded prior to assembling the shape.

User Note: CJP groove welded splices of heavy sections can exhibit detrimental effects of weld shrinkage. Members that are sized for compression that are also subject to tensile forces may be less susceptible to damage from shrinkage if they are spliced using PJP groove welds on the flanges and fillet-welded web plates or using bolts for some or all of the splice.

6. **Weld Access Holes**

All weld access holes required to facilitate welding operations shall be detailed to provide room for weld backing as needed. The access hole shall have a length from the toe of the weld preparation not less than 1½ times the thickness of the material in which the hole is made, nor less than 1½ in. (38 mm) The access hole shall have a height not less than the thickness of the material with the access hole, nor less than 3/4 in. (19 mm) nor does it need to exceed 2 in. (50 mm).

For sections that are rolled or welded prior to cutting, the edge of the web shall be sloped or curved from the surface of the flange to the reentrant surface of the access hole. In hot-rolled shapes, and built-up shapes with CJP groove welds that join the web-to-flange, weld access holes shall be free of notches and sharp reentrant corners. No arc of the weld access hole shall have a radius less than 3/8 in. (10 mm).

In built-up shapes with fillet or partial-joint-penetration groove welds that join the web-to-flange, weld access holes shall be free of notches and sharp reentrant corners. The access hole shall be permitted to terminate perpendicular to the flange, providing the weld is terminated at least a distance equal to the weld size away from the access hole.

For heavy sections as defined in Sections A3.1c and A3.1d, the thermally cut surfaces of weld access holes shall be ground to bright metal and inspected by either magnetic particle or dye penetrant methods prior to deposition of splice welds. If the curved transition portion of weld access holes is formed by predrilled or sawed holes, that portion of the access hole need not be ground. Weld access holes in other shapes need not be ground nor inspected by dye penetrant or magnetic particle methods.

7. **Placement of Welds and Bolts**

Groups of welds or bolts at the ends of any member which transmit axial force into that member shall be sized so that the center of gravity
of the group coincides with the center of gravity of the member, unless provision is made for the eccentricity. The foregoing provision is not applicable to end connections of single angle, double angle and similar members.

8. **Bolts in Combination with Welds**

Bolts shall not be considered as sharing the load in combination with welds, except that shear connections with any grade of bolts permitted by Section A3.3 installed in standard holes or short slots transverse to the direction of the load are permitted to be considered to share the load with longitudinally loaded *fillet welds*. In such connections the available strength of the bolts shall not be taken as greater than 50% of the available strength of bearing-type bolts in the connection.

In making welded alterations to structures, existing rivets and high strength bolts tightened to the requirements for *slip-critical connections* are permitted to be utilized for carrying loads present at the time of alteration and the welding need only provide the additional required strength.

9. **High-Strength Bolts in Combination with Rivets**

In both new work and alterations, in connections designed as *slip-critical connections* in accordance with the provisions of Section J3, high-strength bolts are permitted to be considered as sharing the load with existing rivets.

10. **Limitations on Bolted and Welded Connections**

Pretensioned joints, *slip-critical joints* or welds shall be used for the following connections:

1. **Column splices** in all multi-story structures over 125 ft (38 m) in height.

2. Connections of all *beams* and *girders* to columns and any other beams and girders on which the bracing of columns is dependent in structures over 125 ft (38 m) in height.

3. In all structures carrying cranes of over 5 ton (50 kN) capacity: roof truss splices and connections of trusses to columns, column splices, column bracing, knee braces and crane supports.

4. Connections for the support of machinery and other live *loads* that produce impact or reversal of load.

Snug-tightened joints or joints with ASTM A307 bolts shall be permitted except where otherwise specified.

J2. **WELDS**

All provisions of AWS D1.1, apply under this Specification, with the exception that the provisions of the listed AISC Specification Sections
apply under this Specification in lieu of the cited AWS provisions as
follows:

(1) Section J1.6 in lieu of AWS D1.1 Section 5.17.1
(2) Section J2.2a in lieu of AWS D1.1 Section 2.3.2
(3) Table J2.2 in lieu of AWS D1.1 Table 2.1
(4) Table J2.5 in lieu of AWS D1.1 Table 2.3
(5) Appendix 3, Table A-3.1 in lieu of AWS D1.1 Table 2.4
(6) Section B3.10 and Appendix 3 in lieu of AWS D1.1 Section 2, Part
C
(7) Section M2.2 in lieu of AWS D1.1 Sections 5.15.4.3 and 5.15.4.4

1. Groove Welds

1a. Effective Area

The effective area of groove welds shall be considered as the length of
the weld times the effective throat.

The effective throat of a complete-joint-penetration (CJP) groove weld
shall be the thickness of the thinner part joined.

The effective throat of a partial-joint-penetration (PJP) groove weld
shall be as shown in Table J2.1.

User Note: The effective throat of a partial-joint-penetration groove
weld is dependent on the process used and the weld position. The
contract documents should either indicate the effective throat required
or the weld strength required, and the fabricator should detail the joint
based on the weld process and position to be used to weld the joint.

The effective weld size for flare groove welds, when filled flush to the
surface of a round bar, a 90° bend in a formed section or rectangular
HSS shall be as shown in Table J2.2, unless other effective weld sizes
are demonstrated by tests. The effective size of flare groove welds
filled less than flush shall be as shown in Table J2.2, less the greatest
perpendicular dimension measured from a line flush to the base metal
surface to the weld surface.

Larger effective throats than those in Table J2.2 are permitted,
provided the fabricator can establish by qualification the consistent
production of such larger effective throat. Qualification shall consist of
sectioning the weld normal to its axis, at mid-length and terminal ends.
Such sectioning shall be made on a number of combinations of
material sizes representative of the range to be used in the fabrication.

1b. Limitations

The minimum effective throat of a partial-joint-penetration groove
weld shall not be less than the size required to transmit calculated
forces nor the size shown in Table J2.3. Minimum weld size is determined by the thinner of the two parts joined.

TABLE J2.1
Effective Throat of Partial-Joint-Penetration Groove Welds

<table>
<thead>
<tr>
<th>Welding Process</th>
<th>Welding Position</th>
<th>Groove Type (AWS D1.1, Figure 3.3)</th>
<th>Effective Throat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shielded metal arc (SMAW)</td>
<td>All</td>
<td>J or U groove</td>
<td>depth of groove</td>
</tr>
<tr>
<td>Gas metal arc (GMAW)</td>
<td>All</td>
<td>depth of groove</td>
<td></td>
</tr>
<tr>
<td>Flux cored arc (FCAW)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submerged arc (SAW)</td>
<td>F</td>
<td>J or U groove</td>
<td>60° V</td>
</tr>
<tr>
<td>Gas metal arc (GMAW)</td>
<td>F, H</td>
<td>45° bevel</td>
<td>depth of groove</td>
</tr>
<tr>
<td>Flux cored arc (FCAW)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shielded metal arc (SMAW)</td>
<td>All</td>
<td>45° bevel</td>
<td>depth of groove</td>
</tr>
<tr>
<td>Gas metal arc (GMAW)</td>
<td>V, OH</td>
<td>45° bevel</td>
<td>depth of groove</td>
</tr>
</tbody>
</table>

TABLE J2.2
Effective Weld Sizes of Flare Groove Welds

<table>
<thead>
<tr>
<th>Welding Process</th>
<th>Flare Bevel Groove</th>
<th>Flare V Groove</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMAW and FCAW-G</td>
<td>5/8 R</td>
<td>3/4 R</td>
</tr>
<tr>
<td>SMAW and FCAW-S</td>
<td>5/16 R</td>
<td>5/8 R</td>
</tr>
<tr>
<td>SAW</td>
<td>5/16 R</td>
<td>1/2 R</td>
</tr>
</tbody>
</table>

[a] For flare bevel groove with \(R < 3/8 \) in. (10 mm) use only reinforcing fillet weld on filled flush joint.

General note: \(R = \) radius of joint surface (can be assumed to be 2\(t \) for HSS), in. (mm)

TABLE J2.3
Minimum Effective Throat of Partial-Joint-Penetration Groove Welds

<table>
<thead>
<tr>
<th>Material Thickness of Thinner Part Joined, in. (mm)</th>
<th>Minimum Effective Throat Thickness, [a] in. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>To ¼ (6) inclusive</td>
<td>1/8 (3)</td>
</tr>
<tr>
<td>Over ¼ (6) to ½ (13)</td>
<td>3/16 (5)</td>
</tr>
<tr>
<td>Over ½ (13) to ¾ (19)</td>
<td>3/8 (10)</td>
</tr>
<tr>
<td>Over ¾ (19) to 1 ½ (38)</td>
<td>5/16 (8)</td>
</tr>
<tr>
<td>Over 1 ½ (38) to 2 ½ (57)</td>
<td>½ (6)</td>
</tr>
<tr>
<td>Over 2 ½ (57) to 6 (150)</td>
<td>½ (13)</td>
</tr>
</tbody>
</table>
2. Fillet Welds

2a. Effective Area

The effective area of a fillet weld shall be the effective length multiplied by the effective throat. The effective throat of a fillet weld shall be the shortest distance from the root to the face of the diagrammatic weld. An increase in effective throat is permitted if consistent penetration beyond the root of the diagrammatic weld is demonstrated by tests using the production process and procedure variables.

For fillet welds in holes and slots, the effective length shall be the length of the centerline of the weld along the center of the plane through the throat. In the case of overlapping fillets, the effective area shall not exceed the nominal cross-sectional area of the hole or slot, in the plane of the faying surface.

2b. Limitations

The minimum size of fillet welds shall be not less than the size required to transmit calculated forces, nor the size as shown in Table J2.4. These provisions do not apply to fillet weld reinforcements of partial- or complete-joint-penetration groove welds.

TABLE J2.4

Minimum Size of Fillet Welds

<table>
<thead>
<tr>
<th>Material Thickness of Thinner Part Joined, in. (mm)</th>
<th>Minimum Size of Fillet Weld,[^{[a]}] in. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>To ¼ (6) inclusive</td>
<td>1/8 (3)</td>
</tr>
<tr>
<td>Over ¼ (6) to ½ (13)</td>
<td>3/16 (5)</td>
</tr>
<tr>
<td>Over ½ (13) to ¾ (19)</td>
<td>¼ (6)</td>
</tr>
<tr>
<td>Over ¾ (19)</td>
<td>5/16 (8)</td>
</tr>
</tbody>
</table>

\[^{[a]}\] Leg dimension of fillet welds. Single pass welds must be used.

Note: See Section J2.2b for maximum size of fillet welds.

The maximum size of fillet welds of connected parts shall be:

(a) Along edges of material less than ¼-in. (6 mm) thick, not greater than the thickness of the material.

(b) Along edges of material ¼ in. (6 mm) or more in thickness, not greater than the thickness of the material minus ¼ in. (2 mm), unless the weld is especially designated on the drawings to be built out to obtain full-throat thickness. In the as-welded condition, the distance between the edge of the base metal and the toe of the weld is permitted to be less than ¼ in. (2 mm) provided the weld size is clearly verifiable.
The minimum effective length of fillet welds designed on the basis of strength shall be not less than four times the nominal size, or else the effective size of the weld shall be considered not to exceed 1/4 of its length. If longitudinal fillet welds are used alone in end connections of flat-bar tension members, the length of each fillet weld shall be not less than the perpendicular distance between them. For the effect of longitudinal fillet weld length in end connections upon the effective area of the connected member, see Section D3.

For end-loaded fillet welds with a length up to 100 times the leg dimension, it is permitted to take the effective length equal to the actual length. When the length of the end-loaded fillet weld exceeds 100 times the weld size, the effective length shall be determined by multiplying the actual length by the reduction factor, \(\beta \), determined as follows:

\[
\beta = 1.2 - 0.002 \left(\frac{l}{w} \right) \leq 1.0
\]

where

\(l = \) actual length of end-loaded weld, in. (mm)
\(w = \) size of weld leg, in. (mm)

When the length of the weld exceeds 300 times the leg size, \(w \), the effective length shall be taken as 180\(w \).

Intermittent fillet welds are permitted to be used to transfer calculated stress across a joint or faying surfaces when the required strength is less than that developed by a continuous fillet weld of the smallest permitted size, and to join components of built-up members. The effective length of any segment of intermittent fillet welding shall be not less than four times the weld size, with a minimum of 1½ in. (38 mm).

In lap joints, the minimum amount of lap shall be five times the thickness of the thinner part joined, but not less than 1 in. (25 mm). Lap joints joining plates or bars subjected to axial stress that utilize transverse fillet welds only shall be fillet welded along the end of both lapped parts, except where the deflection of the lapped parts is sufficiently restrained to prevent opening of the joint under maximum loading.

Fillet weld terminations are permitted to be stopped short or extend to the ends or sides of parts or be boxed except as limited by the following:

(1) For overlapping elements of members in which one connected part extends beyond an edge of another connected part that is subject to calculated tensile stress, fillet welds shall terminate not less than the size of the weld from that edge.
(2) For connections where flexibility of the outstanding elements is required, when end returns are used, the length of the return shall not exceed four times the nominal size of the weld nor half the width of the part.

(3) Fillet welds joining transverse stiffeners to plate girder webs ¼ in. (19 mm) thick or less shall end not less than four times nor more than six times the thickness of the web from the web toe of the web-to-flange welds, except where the ends of stiffeners are welded to the flange.

(4) Fillet welds that occur on opposite sides of a common plane shall be interrupted at the corner common to both welds.

User Note: Fillet weld terminations should be located approximately one weld size from the edge of the connection to minimize notches in the base metal. Fillet welds terminated at the end of the joint, other than those connecting stiffeners to girder webs, are not a cause for

Fillet welds in holes or slots are permitted to be used to transmit shear in lap joints or to prevent the buckling or separation of lapped parts and to join components of built-up members. Such fillet welds may overlap, subject to the provisions of Section J2. Fillet welds in holes or slots are not to be considered plug or slot welds.

3. Plug and Slot Welds

3a. Effective Area

The effective shearing area of plug and slot welds shall be considered as the nominal cross-sectional area of the hole or slot in the plane of the faying surface.

3b. Limitations

Plug or slot welds are permitted to be used to transmit shear in lap joints or to prevent buckling of lapped parts and to join component parts of built-up members.

The diameter of the holes for a plug weld shall not be less than the thickness of the part containing it plus 5/16 in. (8 mm), rounded to the next larger odd 1/16 in. (even mm), nor greater than the minimum diameter plus 1/8 in. (3 mm) or 2¼ times the thickness of the weld.

The minimum center-to-center spacing of plug welds shall be four times the diameter of the hole.

The length of slot for a slot weld shall not exceed 10 times the thickness of the weld. The width of the slot shall be not less than the thickness of the part containing it plus 5/16 in. (8 mm) rounded to the next larger odd 1/16 in. (even mm), nor shall it be larger than 2¼ times.
the thickness of the weld. The ends of the slot shall be semicircular or shall have the corners rounded to a radius of not less than the thickness of the part containing it, except those ends which extend to the edge of the part.

The minimum spacing of lines of slot welds in a direction transverse to their length shall be four times the width of the slot. The minimum center-to-center spacing in a longitudinal direction on any line shall be two times the length of the slot.

The thickness of plug or slot welds in material 5/8 in. (16 mm) or less in thickness shall be equal to the thickness of the material. In material over 5/8 in. (16 mm) thick, the thickness of the weld shall be at least one-half the thickness of the material but not less than 5/8 in. (16 mm).

4. Strength

The design strength, \(\phi R_n \), and the allowable strength, \(R_n/\Omega \), of welded joints shall be the lower value of the base material strength determined according to the limit states of tensile rupture and shear rupture and the weld metal strength determined according to the limit state of yielding as follows:

For the base metal

\[
R_n = F_{nBM} A_{BM} \tag{J2-2}
\]

For the weld metal

\[
R_n = F_{nw} A_{we} \tag{J2-3}
\]

where

\(F_{nBM} \) = nominal strength per unit area of the base metal, ksi (MPa)
\(F_{nw} \) = nominal strength per unit area of the weld metal, ksi (MPa)
\(A_{BM} \) = cross-sectional area of the base metal, in.\(^2\) (mm\(^2\))
\(A_{we} \) = effective area of the weld, in.\(^2\) (mm\(^2\))

The values of \(\phi \), \(\Omega \), \(F_{nBM} \) and \(F_{nw} \) and limitations thereon are given in Table J2.5.
<table>
<thead>
<tr>
<th>Load Type and Direction Relative to Weld Axis</th>
<th>Pertinent Metal</th>
<th>ϕ and Ω</th>
<th>Nominal Strength per Unit Area (F_{ubw} or F_{uw}) ksi (MPa)</th>
<th>Effective Area (A_{uw} or A_{uw}) in.2 (mm2)</th>
<th>Required Filler Metal Strength Level $[a][b]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPLETE-JOINT-PENETRATION GROOVE WELDS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tension Normal to weld axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength of the joint is controlled by the base metal</td>
<td></td>
<td></td>
<td>Matching filler metal shall be used. For T and corner joints with backing left in place, notch tough filler metal is required. See Section J2.6.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compression Normal to weld axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength of the joint is controlled by the base metal</td>
<td></td>
<td></td>
<td>Filler metal with a strength level equal to or one strength level less than matching filler metal is permitted.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tension or compression Parallel to weld axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tension or compression in parts joined parallel to a weld need not be considered in design of welds joining the parts.</td>
<td></td>
<td></td>
<td>Filler metal with a strength level equal to or less than matching filler metal is permitted.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength of the joint is controlled by the base metal</td>
<td></td>
<td></td>
<td>Matching filler metal shall be used. [c]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| PARTIAL-JOINT-PENETRATION GROOVE WELDS INCLUDING FLARE VEE GROOVE AND FLARE BEVEL GROOVE WELDS |
|---|----------------|-------------------|---------------------------------|---------------------------------|-----------------------------------|
| Tension Normal to weld axis | | | | | |
| Base $\phi = 0.90$ $\Omega = 1.67$ F_y | See J4 | | | | |
| Weld $\phi = 0.80$ $\Omega = 1.88$ 0.60 F_{EXX} | See J2.1a | | | | |
| Compression Column to base plate and column splices designed per Section J1.4(a) | | | Compressive stress need not be considered in design of welds joining the parts. |
| Base $\phi = 0.90$ $\Omega = 1.67$ F_y | See J4 | | | | |
| Weld $\phi = 0.80$ $\Omega = 1.88$ 0.60 F_{EXX} | See J2.1a | | | | |
| Compression Connections of members designed to bear other than columns as described in Section J1.4(b) | | | Filler metal with a strength level equal to or less than matching filler metal is permitted. |
| Base $\phi = 0.90$ $\Omega = 1.67$ F_y | See J4 | | | | |
| Weld $\phi = 0.80$ $\Omega = 1.88$ 0.60 F_{EXX} | See J2.1a | | | | |
| Compression Connections not finished-to-bear | | | Filler metal with a strength level equal to or less than matching filler metal is permitted. |
| Base $\phi = 0.90$ $\Omega = 1.67$ F_y | See J4 | | | | |
| Weld $\phi = 0.80$ $\Omega = 1.88$ 0.90 F_{EXX} | See J2.1a | | | | |</p>
<table>
<thead>
<tr>
<th>Tension or compression</th>
<th>Shear</th>
<th>Tension or compression in parts joined parallel to a weld need not be considered in design of welds joining the parts.</th>
<th>Filler metal with a strength level equal to or less than matching filler metal is permitted.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>Governed by J4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weld</td>
<td>$\phi = 0.75$</td>
<td>$\Omega = 2.00$</td>
<td>$0.60 F_{E,XX}$</td>
</tr>
</tbody>
</table>

FILLET WELDS INCLUDING FILLETS IN HOLES AND SLOTS AND SKEWED T-JOINTS

<table>
<thead>
<tr>
<th>Tension or compression</th>
<th>Shear</th>
<th>Tension or compression in parts joined parallel to a weld need not be considered in design of welds joining the parts.</th>
<th>Filler metal with a strength level equal to or less than matching filler metal is permitted.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base</td>
<td>Governed by J4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weld</td>
<td>$\phi = 0.75$</td>
<td>$\Omega = 2.00$</td>
<td>$0.60 F_{E,XX}$</td>
</tr>
</tbody>
</table>

PLUG AND SLOT WELDS

<table>
<thead>
<tr>
<th>Shear</th>
<th>Parallel to faying surface on the effective area</th>
<th>Base</th>
<th>Governed by J4</th>
<th>Filler metal with a strength level equal to or-less than matching filler metal is permitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weld</td>
<td>$\phi = 0.75$</td>
<td>$\Omega = 2.00$</td>
<td>$0.60 F_{E,XX}$</td>
<td>J2.3a</td>
</tr>
</tbody>
</table>

- For matching weld metal see AWS D1.1, Section 3.3.
- For matching weld metal see AWS D1.1, Section 3.3.
- Filler metal with a strength level one strength level greater than matching is permitted.
- Filler metals with a strength level less than matching may be used for groove welds between the webs and flanges of built-up sections transferring shear loads, or in applications where high restraint is a concern. In these applications, the weld joint shall be detailed and the weld shall be designed using the thickness of the material as the effective throat, $\phi = 0.80$, $\Omega = 1.88$ and $0.60 F_{E,XX}$ as the nominal strength.
- Alternatively, the provisions of Section J2.4(a) are permitted provided the deformation compatibility of the various weld elements is considered. Sections J2.4(b) and (c) are special applications of Section J2.4(a) that provide for deformation compatibility.

Alternatively, for *fillet welds* loaded in-plane the available strength is permitted to be determined as follows:

$$\phi = 0.75 \ (LRFD) \quad \Omega = 2.00 \ (ASD)$$

(a) For a linear weld group with a uniform leg size, loaded in-plane through the center of gravity

$$R_n = F_{nw} A_{we} \quad (J2-4)$$

where

$$F_{nw} = 0.60 F_{E,XX} \left(1.0 + 0.50 \sin^{1.5} \theta\right) \quad (J2-5)$$

and

$$F_{E,XX} = \text{electrode classification strength, ksi (MPa)}$$

$$\theta = \text{angle of loading measured from the weld longitudinal axis, degrees}$$

User Note: A linear weld group is one in which all elements are in a line or parallel.

(b) For weld elements within a weld group that are loaded in-plane and analyzed using an instantaneous center of rotation method, the components of the nominal strength, R_{nx} and R_{ny} and the nominal moment capacity, M_n, are permitted to be determined as follows:
\[R_{s}\bar{y} = \sum F_{nwi} A_{wei} \]
\[R_{n} = \sum F_{nwiy} A_{wei} \] \hspace{1cm} (J2-6)
\[M_{n} = \sum \left[F_{nwiy} A_{wei}(x_{i}) - F_{nwx} A_{wei}(y_{i})\right] \] \hspace{1cm} (J2-7)

where

\[A_{wei} = \text{effective area of weld throat of any } i\text{th weld element, in.}^{2} \]
\[(\text{mm}^{2}) \]
\[F_{nwi} = 0.60 F_{\text{exe}} \left(1.0 + 0.50 \sin^{-1} \theta_{i}\right) f(p_{i}) \] \hspace{1cm} (J2-8)
\[f(p_{i}) = \left[p_{i}(1.9 - 0.9 p_{i})\right]^{0.3} \] \hspace{1cm} (J2-9)
\[F_{nwx} = \text{x component of stress, } F_{\text{axi}}, \text{ksi (MPa)} \]
\[F_{nwy} = \text{y component of stress, } F_{\text{ayi}}, \text{ksi (MPa)} \]
\[p_{i} = \Delta_{i} / \Delta_{ai}, \text{ ratio of element } i\text{ deformation to its deformation at maximum stress} \]
\[r_{cr} = \text{distance from instantaneous center of rotation to weld element with minimum } \Delta_{ai} / r_{i}, \text{ratio, in. (mm)} \]
\[r_{i} = \text{distance from instantaneous center of rotation to } i\text{th weld element, in. (mm)} \]
\[x_{i} = \text{x component of } r_{i} \]
\[y_{i} = \text{y component of } r_{i} \]
\[\Delta_{i} = \text{deformation of weld elements at intermediate stress levels, linearly proportioned to the critical deformation based on distance from the instantaneous center of rotation, } r_{i}, \text{ in. (mm)} \]
\[\Delta_{ai} = r_{i} \Delta_{al} / r_{cr} \]
\[\Delta_{ai} = 0.209(\theta_{i} + 2)^{-0.32} w, \text{ deformation of weld element at maximum stress, in. (mm)} \]
\[\Delta_{al} = 1.087(\theta_{i} + 6)^{-0.65} w \leq 0.17 w, \text{ deformation of weld element at ultimate stress (fracture), usually in element furthest from instantaneous center of rotation, in. (mm)} \]
\[\theta_{i} = \text{angle of loading measured from the longitudinal axis of } i\text{th weld element, degrees} \]

(c) For fillet weld groups concentrically loaded and consisting of elements with a uniform leg size that are oriented both longitudinally and transversely to the direction of applied load, the combined strength, \(R_{m} \), of the fillet weld group shall be determined as the greater of

\[(i) \ R_{n} = R_{nwi} + R_{nwt} \] \hspace{1cm} (J2-10a)
\[(ii) \ R_{n} = 0.85 R_{nwi} + 1.5 R_{nwt} \] \hspace{1cm} (J2-10b)
where

\[R_{nwl} = \text{the total nominal strength of longitudinally loaded fillet welds, as determined in accordance with Table J2.5, kips (N)} \]

\[R_{nwt} = \text{the total nominal strength of transversely loaded fillet welds, as determined in accordance with Table J2.5 without the alternate in Section J2.4(a), kips (N)} \]

5. Combination of Welds

If two or more of the general types of welds (groove, fillet, plug, slot) are combined in a single joint, the strength of each shall be separately computed with reference to the axis of the group in order to determine the strength of the combination.

6. Filler Metal Requirements

The choice of filler metal for use with complete-joint-penetration groove welds subject to tension normal to the effective area shall comply with the requirements for matching filler metals given in AWS D1.1.

User Note: The following User Note Table summarizes the AWS D1.1 provisions for matching filler metals. Other restrictions exist. For a complete list of base metals and prequalified matching filler metals see AWS D1.1, Table 3.1.

<table>
<thead>
<tr>
<th>Base Metal</th>
<th>Matching Filler Metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>A36 ≤ 3/4 in. thick</td>
<td>60 & 70 ksi Electrodes</td>
</tr>
<tr>
<td>A572 (Gr. 50 & 55)</td>
<td>A992 A1018</td>
</tr>
<tr>
<td>A913 (Gr. 50)</td>
<td>SMAW: E7015, E7016, E7018, E7028</td>
</tr>
<tr>
<td>A1011</td>
<td>Other processes: 70 ksi electrodes</td>
</tr>
<tr>
<td>A913 (Gr. 60 & 65)</td>
<td>80 ksi electrodes</td>
</tr>
</tbody>
</table>

* For corrosion resistance and color similar to the base see AWS D1.1, Sect. 3.7.3

Notes:

1. Electrodes shall meet the requirements of AWS A5.1, A5.5, A5.17, A5.18, A5.20, A5.23, A5.28 or A5.29.

In joints with base metals of different strengths use either a filler metal that matches the higher strength base metal or a filler metal that matches the lower strength and produces a low hydrogen deposit.

Filler metal with a specified minimum Charpy V-Notch (CVN) toughness of 20 ft-lbs (27 J) at 40° F (4° C) or lower shall be used in the following joints:

(1) Complete-joint-penetration groove welded T and corner joints with steel backing left in place, subject to tension normal to the effective area, unless the joints are designed using the nominal
strength and resistance factor or safety factor as applicable for a partial-joint-penetration groove weld.

(2) Complete-joint-penetration groove welded splices subject to tension normal to the effective area in heavy sections as defined in A3.1c and A3.1d.

The manufacturer’s Certificate of Conformance shall be sufficient evidence of compliance.

7. Mixed Weld Metal

When Charpy V-Notch toughness is specified, the process consumables for all weld metal, tack welds, root pass and subsequent passes deposited in a joint shall be compatible to ensure notch-tough composite weld metal.

J3. BOLTS AND THREADED PARTS

1. High-Strength Bolts

Use of high-strength bolts shall conform to the provisions of the Specification for Structural Joints Using ASTM A325 or A490 Bolts, hereafter referred to as the RCSC Specification, as approved by the Research Council on Structural Connections, except as otherwise provided in this Specification. High strength bolts in this Specification are grouped according to material strength as follows:

Group A – ASTM A325, A325M, F1582, A354 Grade BC and A449
Group B – ASTM A490, A490M, F2280 and A354 Grade BD

When assembled, all joint surfaces, including those adjacent to the washers, shall be free of scale, except tight mill scale. All high-strength bolts shall be tightened to a bolt tension not less than that given in Table J3.1 or J3.1M, except as noted below. Except as permitted below, installation shall be assured by any of the following methods: turn-of-nut method, a direct-tension-indicator, twist-off-type tensions-control bolt, calibrated wrench or alternative design bolt.

Bolts are permitted to be installed to the snug-tight condition when used in
(a) bearing-type connections, or
(b) tension or combined shear and tension applications, for Group A bolts only, where loosening or fatigue due to vibration or load fluctuations are not design considerations.

The snug-tight condition is defined as the tightness attained by either a few impacts of an impact wrench or the full effort of a worker with an ordinary spud wrench that brings the connected plies into firm
contact. Bolts to be tightened to a condition other than snug tight shall be clearly identified on the design drawings.

User Note: Bolts tightened in excess of snug tight are permissible where snug tight is specified.

When Group B bolts over 1 in. (25 mm) in diameter are used in slotted or oversized holes in external plies, a single hardened washer conforming to ASTM F436, except with 5/16-in. (8 mm) minimum thickness, shall be used in lieu of the standard washer.

User Note: Washer requirements are provided in the RCSC Specification, Section 6.

In *slip-critical connections* designed to prevent slip as a serviceability limit state, in which the direction of loading is toward an edge of a connected part, adequate available bearing strength shall be provided based upon the applicable requirements of Section J3.10.

When bolt requirements cannot be provided within the RCSC Specification limitations because of requirements for lengths exceeding 12 diameters or diameters exceeding 1½ in. (38 mm), bolts or threaded rods conforming to Group A or Group B materials are permitted to be used in accordance with the provisions for threaded rods in Table J3.2.

When ASTM A354 Gr. BC, A354 Gr. BD, or A449 bolts and threaded rods are used in *slip-critical connections*, the bolt geometry including the thread pitch, thread length, head and nut(s) shall be equal to or (if larger in diameter) proportional to that required by the RCSC Specification. Installation shall comply with all applicable requirements of the RCSC Specification with modifications as required for the increased diameter and/ or length to provide the design pretension.

2. **Size and Use of Holes**

The maximum sizes of holes for bolts are given in Table J3.3 or J3.3M, except that larger holes, required for tolerance on location of anchor rods in concrete foundations, are permitted in *column base details.*

Standard holes or *short-slotted holes* transverse to the direction of the load shall be provided in accordance with the provisions of this specification, unless oversized holes, short-slotted holes parallel to the load or *long-slotted holes* are approved by the *engineer of record.* Finger *shims* up to ¼ in. (6 mm) are permitted in *slip-critical connections* designed on the basis of standard holes without reducing the nominal shear strength of the *fastener* to that specified for slotted holes.
Oversized holes are permitted in any or all plies of slip-critical connections, but they shall not be used in bearing-type connections. Hardened washers shall be installed over oversized holes in an outer ply.

Short-slotted holes are permitted in any or all plies of slip-critical or bearing-type connections. The slots are permitted without regard to direction of loading in slip-critical connections, but the length shall be normal to the direction of the load in bearing-type connections. Washers shall be installed over short-slotted holes in an outer ply; when high-strength bolts are used, such washers shall be hardened.

Long-slotted holes are permitted in only one of the connected parts of either a slip-critical or bearing-type connection at an individual faying surface. Long-slotted holes are permitted without regard to direction of loading in slip-critical connections, but shall be normal to the direction of load in bearing-type connections. Where long-slotted holes are used in an outer ply, plate washers, or a continuous bar with standard holes, having a size sufficient to completely cover the slot after installation, shall be provided. In high-strength bolted connections, such plate washers or continuous bars shall be not less than 5/16 in. (8 mm) thick and shall be of structural grade material, but need not be hardened. If hardened washers are required for use of high-strength bolts, the hardened washers shall be placed over the outer surface of the plate washer or bar.

3. Minimum Spacing

The distance between centers of standard, oversized, or slotted holes, shall not be less than $2\frac{2}{3}$ times the nominal diameter, d, of the fastener; a distance of $3d$ is preferred.
TABLE J3.2
Nominal Strength of Fasteners and Threaded Parts, ksi (MPa)

<table>
<thead>
<tr>
<th>Description of Fasteners</th>
<th>Nominal Tensile Strength, F_{nt} ksi (MPa)</th>
<th>Nominal Shear Strength in Bearing-Type Connections, F_{nv} ksi (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>≤ 38 in. (965 mm)</td>
<td>> 38 in. (965 mm)</td>
</tr>
<tr>
<td>A307 bolts</td>
<td>45 (310) $^{[a]}$</td>
<td>27 (188) $^{[c]}$</td>
</tr>
<tr>
<td>Group A (A325 type)</td>
<td>90 (620) $^{[a]}$</td>
<td>54 (372)</td>
</tr>
<tr>
<td>Group A (A325 type)</td>
<td>90 (620) $^{[a]}$</td>
<td>68 (457)</td>
</tr>
<tr>
<td>Group B (A490 type)</td>
<td>113 (780) $^{[a]}$</td>
<td>68 (457)</td>
</tr>
<tr>
<td>Group B (A490 type)</td>
<td>113 (780) $^{[a]}$</td>
<td>84 (579)</td>
</tr>
<tr>
<td>Threaded parts meeting the requirements of Section A3.4, when threads are not excluded from shear planes</td>
<td>$0.75 F_u$ $^{[a]}$</td>
<td>$0.450 F_u$</td>
</tr>
<tr>
<td>Threaded parts meeting the requirements of Section A3.4, when threads are not excluded from shear planes</td>
<td>$0.75 F_u$ $^{[a]}$</td>
<td>0. 563F_u</td>
</tr>
</tbody>
</table>

$^{[a]}$ Fastener pattern length is defined as the distance measured parallel to the line of force from the centerline of the end bolts for lap splices. For butt splices, the distance is measured from the centerline to the end bolt to the centerline of the bolt nearest the connection center.

$^{[b]}$ Subject to the requirements of Appendix 3.

$^{[c]}$ For A307 bolts the tabulated values shall be reduced by 1% for each 1/16 in. (2 mm) over 5 diameters of length in the grip.

$^{[d]}$ Threads permitted in shear planes.

$^{[e]}$ For high-strength bolts subject to tensile fatigue loading, see Appendix 3.

$^{[f]}$ Applicable only to end-loaded connections.

User Note: ASTM F1554 anchor rods may be furnished in accordance to product specifications with a body diameter less than the nominal diameter. Load effects such as bending and elongation should be calculated based on minimum diameters permitted by the product specification. See ASTM F1554 and Manual Table 2-5.
4. Minimum Edge Distance

The distance from the center of a standard hole to an edge of a connected part in any direction shall not be less than either the applicable value from Table J3.4 or J3.4M, or as required in Section J3.10. The distance from the center of an oversized or slotted hole to an edge of a connected part shall be not less than that required for a standard hole to an edge of a connected part plus the applicable increment C, from Table J3.5 or J3.5M.

User Note: The edge distances in Tables J3.4 and J3.4M are minimum edge distances based on standard fabrication practices and workmanship tolerances. The appropriate provisions of Sections J3.10 and J4 must be satisfied.

5. Maximum Spacing and Edge Distance

The maximum distance from the center of any bolt to the nearest edge of parts in contact shall be 12 times the thickness of the connected part under consideration, but shall not exceed 6 in. (150 mm). The longitudinal spacing of fasteners between elements consisting of a plate and a shape or two plates in continuous contact shall be as follows:

<table>
<thead>
<tr>
<th>Bolt Diameter</th>
<th>Hole Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard (Dia.)</td>
</tr>
<tr>
<td>½</td>
<td>9/16</td>
</tr>
<tr>
<td>5/8</td>
<td>11/16</td>
</tr>
<tr>
<td>7/8</td>
<td>15/16</td>
</tr>
<tr>
<td>1</td>
<td>1 1/16</td>
</tr>
<tr>
<td>≥1 1/8</td>
<td>d + 1/16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bolt Diameter</th>
<th>Hole Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard (Dia.)</td>
</tr>
<tr>
<td>M16</td>
<td>18</td>
</tr>
<tr>
<td>M20</td>
<td>22</td>
</tr>
<tr>
<td>Bolt Diameter (in.)</td>
<td>Minimum Edge Distance (in.)</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>¼</td>
<td>3/4</td>
</tr>
<tr>
<td>5/32</td>
<td>7/8</td>
</tr>
<tr>
<td>¼</td>
<td>1</td>
</tr>
<tr>
<td>7/8</td>
<td>11/8</td>
</tr>
<tr>
<td>1</td>
<td>1 ½</td>
</tr>
<tr>
<td>1 1/4</td>
<td>1 5/8</td>
</tr>
<tr>
<td>Over 1 1/4</td>
<td>1 ¾ x d</td>
</tr>
</tbody>
</table>

[a] If necessary, lesser edge distances are permitted provided the appropriate provisions from Sections J3.10 and J4 are satisfied, but edge distances less than (1) bolt diameter are not permitted without approval from the engineer of record.

[b] For oversized or slotted holes, see Table J3.5.

TABLE J3.4M

Minimum Edge Distance[a] from Center of Standard Hole[b] to Edge of Connected Part, \(mm \)

<table>
<thead>
<tr>
<th>Bolt Diameter (mm)</th>
<th>Minimum Edge Distance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>22</td>
<td>28</td>
</tr>
<tr>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>27</td>
<td>34</td>
</tr>
<tr>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>36</td>
<td>46</td>
</tr>
<tr>
<td>Over 36</td>
<td>1.25d</td>
</tr>
</tbody>
</table>

[a] If necessary, lesser edge distances are permitted provided the appropriate provisions from Sections J3.10 and J4 are satisfied, but edge distances less than (1) bolt diameter are not permitted without approval from the engineer of record.

[b] For oversized or slotted holes, see Table J3.5M.
(a) For painted members or unpainted members not subject to corrosion, the spacing shall not exceed 24 times the thickness of the thinner part or 12 in. (305 mm).

(b) For unpainted members of weathering steel subject to atmospheric corrosion, the spacing shall not exceed 14 times the thickness of the thinner part or 7 in. (180 mm).

User Note: Dimensions in (a) and (b) do not apply to elements consisting of two shapes in continuous contact.

6. Tension and Shear Strength of Bolts and Threaded Parts

The design tension or shear strength, ϕR_n, and the allowable tension or shear strength, R_n/Ω, of a snug-tightened or pretensioned high-strength bolt or threaded part shall be determined according to the limit states of tensile rupture and shear rupture as follows:

$$R_n = F_n A_b$$

$$\phi = 0.75 \text{ (LRFD)} \quad \Omega = 2.00 \text{ (ASD)}$$

Bolt shear strength, F_n, for connections less than or equal to 38 in. (965 mm) in Table J3.2 may be used regardless of the connection length where the connection geometry, bolt properties, and connected material properties satisfy:

$$A_g \geq 0.53 \frac{A_s F_{ub}}{F_y} \text{ and}$$

$$A_n \geq 0.53 \frac{A_s F_{ub}}{F_u}$$

where

- $A_b = \text{nominal unthreaded body area of bolt or threaded part (for upset rods, see footnote d, Table J3.2), in.}^2 \text{ (mm}^2\text{)}$
- $A_g = \text{gross section of connected material, in.}^2 \text{ (mm}^2\text{)}$
- $A_n = \text{effective net area of connected material, in.}^2 \text{ (mm}^2\text{)}$
- $A_s = \text{total bolt area included in all shear planes. With threads in the shear plane, } A_s \text{ is taken as 0.80 times the nominal area of the bolts, in.}^2 \text{ (mm}^2\text{)}$
- $F_n = \text{nominal tensile stress } F_{nt}, \text{ or shear stress, } F_{nv} \text{ from Table J3.2, ksi (MPa)}$
- $F_{ub} = \text{nominal tensile strength of bolt or threaded material, ksi (MPa)}$
- $F_u = \text{specified minimum tensile strength of the connected material, ksi (MPa)}$
- $F_y = \text{specified minimum yield stress of the connected material, ksi (MPa)}$
The required tensile strength shall include any tension resulting from prying action produced by deformation of the connected parts.

7. Combined Tension and Shear in Bearing-Type Connections

The available tensile strength of a bolt subjected to combined tension and shear shall be determined according to the limit states of tension and shear rupture as follows:

\[R_n = F'_{nt} A_b \]

\[\phi = 0.75 \text{ (LRFD)} \quad \Omega = 2.00 \text{ (ASD)} \]

where

\[F'_{nt} = \text{nominal tensile stress modified to include the effects of shear stress}, \text{ ksi (MPa)} \]

\[F'_{nt} = 1.3 F_{nt} - \frac{F_{nt}}{\phi} f_{rv} \leq F_{nt} \text{ (LRFD)} \]
\[F'_{nt} = 1.3 F_{nt} - \frac{\Omega F_{nt}}{F_{nv}} f_{rv} \leq F_{nt} \text{ (ASD)} \]

\[F_{nt} = \text{nominal tensile stress from Table J3.2, ksi (MPa)} \]
\[F_{nv} = \text{nominal shear stress from Table J3.2, ksi (MPa)} \]
\[f_{rv} = \text{required shear stress using LRFD or ASD load combinations, ksi (MPa)} \]

The available shear stress of the fastener shall equal or exceed the required shear stress, \(f_{rv} \).

User Note: Note that when the required stress, \(f \), in either shear or tension, is less than or equal to 30% of the corresponding available stress, the effects of combined stress need not be investigated. Also note that Equations J3-3a and J3-3b can be rewritten so as to find a nominal shear stress, \(F'_{nv} \), as a function of the required tensile stress, \(f_t \).

TABLE J3.5

<table>
<thead>
<tr>
<th>Nominal Diameter of Fastener (in.)</th>
<th>Oversized Holes</th>
<th>Slotted Holes</th>
<th>Long Axis Perpendicular to Edge</th>
<th>Long Axis Parallel to Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Long Slots(^{[a]})</td>
<td>Short Slots</td>
<td>3/4d</td>
</tr>
<tr>
<td>≤ 7/8</td>
<td>1/16</td>
<td>1/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1/8</td>
<td>1/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 1 1/8</td>
<td>1/8</td>
<td></td>
<td>3/4d</td>
<td></td>
</tr>
</tbody>
</table>

\(^{[a]}\) When length of slot is less than maximum allowable (see Table J3.3), \(C_2 \) is permitted to be reduced by one-half the difference between the maximum and actual slot lengths.
TABLE J3.5M
Values of Edge Distance Increment C_2, mm

<table>
<thead>
<tr>
<th>Nominal Diameter of Fastener (mm)</th>
<th>Oversized Holes</th>
<th>Slotted Holes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Long Axis Perpendicular to Edge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Short Slots</td>
</tr>
<tr>
<td>≤ 22</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>≥ 27</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

[a] When length of slot is less than maximum allowable (see Table J3.3M), C_2 is permitted to be reduced by one-half the difference between the maximum and actual slot lengths.

8. High-Strength Bolts in Slip-Critical Connections

Slip critical connections shall be designed to prevent slip and for the limit states of bearing type connections. When slip-critical bolts pass through fillers, all surfaces subject to slip shall be prepared to achieve design slip resistance.

The available slip resistance for the limit state of slip shall be determined as follows:

\[R_n = \mu D_u h/T \mu_s \] (J3-4)

For standard size and short-slotted holes perpendicular to the direction of the load

\[\phi = 1.00 \text{ (LRFD)} \quad \Omega = 1.50 \text{ (ASD)} \]

For oversized and short-slotted holes parallel to the direction of the load

\[\phi = 0.85 \text{ (LRFD)} \quad \Omega = 1.76 \text{ (ASD)} \]

For long-slotted holes

\[\phi = 0.70 \text{ (LRFD)} \quad \Omega = 2.14 \text{ (ASD)} \]

where

\[\mu = \text{mean slip coefficient for Class A or B surfaces, as applicable, and determined as follows, or as established by tests:} \]

1. For Class A surfaces (unpainted clean mill scale steel surfaces or surfaces with Class A coatings on blast-cleaned steel or hot-dipped galvanized and roughened surfaces)

\[\mu = 0.30 \]

2. For Class B surfaces (unpainted blast-cleaned steel surfaces or surfaces with Class B coatings on blast-
cleaned steel)

\[\mu = 0.50 \]

\[D_u = 1.13; \text{ a multiplier that reflects the ratio of the mean installed} \]
\[\text{bolt pretension to the specified minimum bolt pretension; the} \]
\[\text{use of other values may be approved by the engineer of re-} \]
\[\text{cord.} \]

\[T_b = \text{minimum fastener tension given in Table J3.1, kips, or J3.1M,} \]
\[\text{kN} \]

\[h_f = \text{factor for fillers, determined as follows:} \]

(1) Where bolts have been added to distribute loads in the
\[\text{filler} \]
\[h_f = 1.0 \]

(2) Where bolts have not been added to distribute the load in
\[\text{the filler:} \]

(i) For one filler between connected parts
\[h_f = 1.0 \]

(ii) For two or more fillers between connected parts
\[h_f = 0.85 \]

\[n_s = \text{number of slip planes required to permit the connection to slip} \]

9. Combined Tension and Shear in Slip-Critical Connections

When a slip-critical connection is subjected to an applied tension that
reduces the net clamping force, the available slip resistance per bolt,
from Section J3.8, shall be multiplied by the factor, \(k_{sc} \), as follows:

\[k_{sc} = 1 - \frac{T_a}{D_u T_n n_b} \] (LRFD) \hfill (J3-5a)

\[k_{sc} = 1 - \frac{1.5 T_a}{D_u T_n n_b} \] (ASD) \hfill (J3-5b)

where

\[T_a = \text{required tension force using ASD load combinations, kips} \]
\[\text{(kN)} \]
\[T_u = \text{required tension force using LRFD load combinations, kips} \]
\[\text{(kN)} \]
\[n_b = \text{number of bolts carrying the applied tension} \]
10. **Bearing Strength at Bolt Holes**

The available bearing strength, ϕR_n and R_n/Ω, at bolt holes shall be determined for the *limit state of bearing* as follows:

$$\phi = 0.75 \text{ (LRFD)} \quad \Omega = 2.00 \text{ (ASD)}$$

The nominal bearing strength of the connected material, R_n, is determined as follows:

(a) For a bolt in a *connection* with standard, oversized and short-slotted holes, independent of the direction of loading, or a long-slotted hole with the slot parallel to the direction of the bearing force:

(i) When deformation at the bolt hole at *service load* is a design consideration

$$R_n = 1.2 l_c t F_u \leq 2.4 d t F_u \quad (J3-6a)$$

(ii) When deformation at the bolt hole at service load is not a design consideration

$$R_n = 1.5 l_c t F_u \leq 3.0 d t F_u \quad (J3-6b)$$

(b) For a bolt in a connection with long-slotted holes with the slot perpendicular to the direction of force

$$R_n = 1.0 l_c t F_u \leq 2.0 d t F_u \quad (J3-6c)$$

(c) For connections made using bolts that pass completely through an unstiffened box member or HSS, see Section J7 and Equation J7-1.

where

- $F_u = \text{specified minimum tensile strength}$ of the connected material, ksi (MPa)
- $d = \text{nominal bolt diameter}$, in. (mm)
- $l_c = \text{clear distance}$, in the direction of the force, between the edge of the hole and the edge of the adjacent hole or edge of the material, in. (mm)
- $t = \text{thickness of connected material}$, in. (mm)

For connections, the bearing resistance shall be taken as the sum of the bearing resistances of the individual bolts.

Bearing strength shall be checked for both bearing-type and slip-critical connections designed to prevent slip as a serviceability limit state. The use of oversized holes and short- and long-slotted holes
parallel to the line of force is restricted to slip-critical connections per Section J3.2.

11. Special Fasteners

The nominal strength of special fasteners other than the bolts presented in Table J3.2 shall be verified by tests.

12. Tension Fasteners

When bolts or other fasteners in tension are attached to an unstiffened box or HSS wall, the strength of the wall shall be determined by rational analysis.

J4. AFFECTED ELEMENTS OF MEMBERS AND CONNECTING ELEMENTS

This section applies to elements of members at connections and connecting elements, such as plates, gussets, angles and brackets.

1. Strength of Elements in Tension

The design strength, ϕR_n, and the allowable strength, R_n / Ω, of affected and connecting elements loaded in tension shall be the lower value obtained according to the limit states of tensile yielding and tensile rupture.

(a) For tensile yielding of connecting elements

$$ R_n = F_y A_g $$ \hspace{1cm} (J4-1)

$$ \phi = 0.90 \text{ (LRFD)} $$ \hspace{1cm} $\Omega = 1.67 \text{ (ASD)}$

(b) For tensile rupture of connecting elements

$$ R_n = F_u A_e $$ \hspace{1cm} (J4-2)

$$ \phi = 0.75 \text{ (LRFD)} $$ \hspace{1cm} $\Omega = 2.00 \text{ (ASD)}$

where

$A_e = \text{effective net area}$ as defined in Section D3, in.2 (mm2); for

bolted splice plates, $A_e = A_s \leq 0.85 A_g$.

User Note: The effective area of the connection plate may be limited due to uneven stress distribution as calculated by methods such as the Whitmore section.

2. Strength of Elements in Shear

The available shear strength of affected and connecting elements in shear shall be the lower value obtained according to the limit states of
shear yielding and shear rupture:

(a) For shear yielding of the element:

\[R_n = 0.60F_yA_{gv} \]

(\text{J4-3})

\[\phi = 1.00 \text{ (LRFD)} \quad \Omega = 1.50 \text{ (ASD)} \]

where

\[A_{gv} = \text{gross area subject to shear, in.}^2 \text{ (mm}^2) \]

(b) For shear rupture of the element:

\[R_n = 0.6F_uA_{nv} \]

(\text{J4-4})

\[\phi = 0.75 \text{ (LRFD)} \quad \Omega = 2.00 \text{ (ASD)} \]

where

\[A_{nv} = \text{net area subject to shear, in.}^2 \text{ (mm}^2) \]

3. Block Shear Strength

The available strength for the limit state of block shear rupture along a shear failure path or path(s) and a perpendicular tension failure path shall be taken as

\[R_n = 0.6 F_uA_{nv} + U_{bs} F_uA_{nt} \leq 0.6F_yA_{gv} + U_{bs}F_uA_{nt} \]

(\text{J4-5})

\[\phi = 0.75 \text{ (LRFD)} \quad \Omega = 2.00 \text{ (ASD)} \]

where

\[A_{gv} = \text{gross area subject to shear, in.}^2 \text{ (mm}^2) \]

\[A_{nt} = \text{net area subject to tension, in.}^2 \text{ (mm}^2) \]

\[A_{nv} = \text{net area subject to shear, in.}^2 \text{ (mm}^2) \]

Where the tension stress is uniform, \(U_{bs} = 1 \); where the tension stress is nonuniform, \(U_{bs} = 0.5 \).

\textbf{User Note:} The cases where \(U_{bs} \) must be taken equal to 0.5 are illustrated in the Commentary.

4. Strength of Elements in Compression

The available strength of connecting elements in compression for the limit states of yielding and buckling shall be determined as follows.

(a) When \(KL/r \leq 25 \)

\[P_n = F_yA_g \]

(\text{J4-6})

\[\phi = 0.90 \text{ (LRFD)} \quad \Omega = 1.67 \text{ (ASD)} \]
5. Strength of Elements in Flexure

The available flexural strength of affected elements shall be the lower value obtained according to the limit states of flexural yielding, local buckling, flexural lateral-torsional buckling and flexural rupture.

User Note: The Steel Construction Manual provides example calculations of flexural strength of specific applications.

J5. FILLERS

1. Welded

Whenever it is necessary to use fillers in joints required to transfer applied force, the fillers and the connecting welds shall conform to the requirements of J5.1a or J5.1b as applicable.

1a. Thin Fillers

Fillers less than ¼ in. (6 mm) thick shall not be used to transfer stress. When the thickness of the fillers is less than ¼ in. (6 mm), or when the thickness of the filler is ¼ in. (6 mm) or greater but not adequate to transfer the applied force between the connected parts, the filler shall be kept flush with the edge of the outside connected part, and the size of the weld shall be increased over the required size by an amount equal to the thickness of the filler.

1b. Thick Fillers

When the thickness of the fillers is adequate to transfer the applied force between the connected parts, the filler shall extend beyond the edges of the outside connected base metal. The welds joining the outside connected base metal to the filler shall be sufficient to transmit the force to the filler and the area subjected to the applied force in the filler shall be adequate to avoid overstressing the filler. The welds joining the filler to the inside connected base metal shall be adequate to transmit the applied force.

2. Bolted

When a bolt that carries load passes through fillers that are equal to or less than ¼ in. (6 mm) thick, the shear strength shall be used without reduction. When a bolt that carries load passes through fillers that are greater than ¼ in. (6 mm) thick, one of the following requirements shall apply:

(a) The shear strength of the bolts shall be multiplied by the factor \[1 - 0.4(t - 0.25)] [S.I.: \[1 - 0.0154(t - 6)] but not less than 0.85,
where \(t \) is the total thickness of the fillers;

(b) The fillers shall be extended beyond the joint and the filler extension shall be secured with enough bolts to uniformly distribute the total force in the connected element over the combined cross section of the connected element and the fillers;

(c) The size of the joint shall be increased to accommodate a number of bolts that is equivalent to the total number required in (b) above; or

(d) The joint shall be designed to prevent slip in accordance with Section J3.8 using either Class B surfaces or turn of the nut tightening.

J6. SPLICES

Groove-welded splices in plate girders and beams shall develop the nominal strength of the smaller spliced section. Other types of splices in cross sections of plate girders and beams shall develop the strength required by the forces at the point of the splice.

J7. BEARING STRENGTH

The design bearing strength, \(\phi R_n \), and the allowable bearing strength, \(R_n / \Omega \), of surfaces in contact shall be determined for the limit state of bearing (local compressive yielding) as follows:

\[
\phi = 0.75 \text{ (LRFD)} \quad \Omega = 2.00 \text{ (ASD)}
\]

The nominal bearing strength, \(R_n \), shall be determined as follows:

(a) For finished surfaces, pins in reamed, drilled, or bored holes, and ends of fitted bearing stiffeners

\[
R_n = 1.8 F_y A_{pb} \quad (J7-1)
\]

where

\[
F_y = \text{specified minimum yield stress, ksi (MPa)}
\]

\[
A_{pb} = \text{projected bearing area, in.}^2 (\text{mm}^2)
\]

(b) For expansion rollers and rockers

(i) Where \(d \leq 25 \text{ in. (635 mm)} \)

\[
R_n = 1.2(F_y - 13)ld / 20 \quad (J7-2)
\]
(S.I.: $R_n = 1.2(F_y - 90)d / 20$)

(ii) Where $d > 25$ in. (635 mm)

$R_n = 6.0(F_y - 13)t \sqrt{d} / 20$

(S.I.: $R_n = 30.2(F_y - 90)t \sqrt{d} / 20$)

where

$d =$ diameter, in. (mm)

$l =$ length of bearing, in. (mm)

J8. COLUMN BASES AND BEARING ON CONCRETE

Proper provision shall be made to transfer the column loads and moments to the footings and foundations.

In the absence of code regulations, the *design bearing strength*, $\phi_c P_p$, and the *allowable bearing strength*, P_p/Ω_c, for the *limit state of concrete crushing* are permitted to be taken as follows:

$\phi_c = 0.65$ (LRFD)

$\Omega_c = 2.31$ (ASD)

The nominal bearing strength, P_p, is determined as follows:

(a) On the full area of a concrete support:

$$P_p = 0.85 f'_c A_1$$

(b) On less than the full area of a concrete support:

$$P_p = 0.85 f'_c A_1 \frac{A_2}{A_1} \leq 1.7 f'_c A_1$$

where

$A_1 =$ area of steel concentrically bearing on a concrete support, in.2 (mm2)

$A_2 =$ maximum area of the portion of the supporting surface that is geometrically similar to and concentric with the loaded area, in.2 (mm2)

J9. ANCHOR RODS AND EMBEDMENTS

Anchor rods shall be designed to provide the required resistance to loads on the completed structure at the base of columns including the net tensile components of any bending moment that may result from load combinations stipulated in Section B2. The anchor rods shall be designed in accordance with the requirements for threaded parts in Table J3.2.
When columns are required to resist a horizontal force at the base plate, bearing against the concrete elements should be considered. When anchor rods are used to resist horizontal forces; hole size, anchor rod setting tolerance, and the horizontal movement of the column shall be considered in the design. Design of column bases and anchor rods for the transfer of forces to the concrete foundation shall satisfy the requirements of ACI 318 or ACI 349.

Larger oversized holes and slotted holes are permitted in base plates when adequate bearing is provided for the nut by using ASTM F844 washers or plate washers and ASTM F436 washers to bridge the hole.

User Note: The permitted hole sizes, corresponding washer dimensions and nuts are given in the AISC *Steel Construction Manual* and ASTM F1554.

User Note: See ACI 318 for embedment design and for shear friction design. See OSHA for special erection requirements for anchor rods.

J10. FLANGES AND WEBS WITH CONCENTRATED FORCES

This section applies to single- and double-concentrated forces applied normal to the flange(s) of wide flange sections and similar built-up shapes. A single-concentrated force can be either tensile or compressive. Double-concentrated forces are one tensile and one compressive and form a couple on the same side of the loaded member.

When the required strength exceeds the available strength as determined for the limit states listed in this section, stiffeners and/or doublers shall be provided and shall be sized for the difference between the required strength and the available strength for the applicable limit state. Stiffeners shall also meet the design requirements in Section J10.8. Doublers shall also meet the design requirement in Section J10.9.

User Note: See Appendix 6.3 for requirements for the ends of cantilever members.

Stiffeners are required at unframed ends of beams in accordance with the requirements of Section J10.7.

1. Flange Local Bending

This section applies to tensile single-concentrated forces and the tensile component of double-concentrated forces.

The design strength, \(\phi R_n \), and the allowable strength, \(R_n/\Omega \), for the limit state of flange local bending shall be determined as follows:

\[R_n = 6.25 t_f^2 F_{iy} \] \hspace{1cm} (J10-1)

\[\phi = 0.90 \text{ (LRFD)} \quad \Omega = 1.67 \text{ (ASD)} \]

where

\[F_{iy} = \text{specified minimum yield stress of the flange, ksi (MPa)} \]
\[t_f = \text{thickness of the loaded flange, in. (mm)} \]

If the length of loading across the member flange is less than 0.15 \(b_f \), where \(b_f \) is the member flange width, Equation J10-1 need not be checked.

When the concentrated force to be resisted is applied at a distance from the member end that is less than 10\(t_f \), \(R_n \) shall be reduced by 50%.

When required, a pair of transverse stiffeners shall be provided.

2. **Web Local Yielding**

This section applies to single-concentrated forces and both components of double-concentrated forces.

The available strength for the limit state of web local yielding shall be determined as follows:

\[\phi = 1.00 \text{ (LRFD)} \quad \Omega = 1.50 \text{ (ASD)} \]

The nominal strength, \(R_n \), shall be determined as follows:

(a) When the concentrated force to be resisted is applied at a distance from the member end that is greater than the depth of the member \(d \),

\[R_n = (5k + l_b)F_{yw} t_w \] \hspace{1cm} (J10-2)

(b) When the concentrated force to be resisted is applied at a distance from the member end that is less than or equal to the depth of the member \(d \),

\[R_n = (2.5k + l_b)F_{yw} t_w \] \hspace{1cm} (J10-3)

where

\[F_{yw} = \text{specified minimum yield stress of the web, ksi (MPa)} \]
\[k = \text{distance from outer face of the flange to the web toe of the fillet, in. (mm)} \]
\[l_b = \text{length of bearing (not less than } k \text{ for end beam reactions), in. (mm)} \]
\[t_w = \text{web thickness, in. (mm)} \]

Specification for Structural Steel Buildings, Public Review Draft dated March 1, 2009

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
When required, a pair of transverse stiffeners or a doubler plate shall be provided.

3. **Web Crippling**

This section applies to compressive single-concentrated forces or the compressive component of double-concentrated forces.

The available strength for the limit state of web local crippling shall be determined as follows:

\[\phi = 0.75 \text{ (LRFD)} \quad \Omega = 2.00 \text{ (ASD)} \]

The nominal strength, \(R_n \), shall be determined as follows:

(a) When the concentrated compressive force to be resisted is applied at a distance from the member end that is greater than or equal to \(d / 2 \):

\[
R_n = 0.80 t_w^2 \left[1 + 3 \left(\frac{t_w}{d} \right) \left(\frac{t_w}{t_f} \right)^{1.5} \right] \sqrt{\frac{EF_w t_f}{t_w}} \tag{J10-4}
\]

(b) When the concentrated compressive force to be resisted is applied at a distance from the member end that is less than \(d / 2 \):

(i) For \(N / d \leq 0.2 \)

\[
R_n = 0.40 t_w^2 \left[1 + 3 \left(\frac{t_w}{d} \right) \left(\frac{t_w}{t_f} \right)^{1.5} \right] \sqrt{\frac{EF_w t_f}{t_w}} \tag{J10-5a}
\]

(ii) For \(N / d > 0.2 \)

\[
R_n = 0.40 t_w^2 \left[1 + \left(\frac{4t_w}{d} - 0.2 \right) \left(\frac{t_w}{t_f} \right)^{1.5} \right] \sqrt{\frac{EF_w t_f}{t_w}} \tag{J10-5b}
\]

where

\[d = \text{full nominal depth of the section, in. (mm)} \]

When required, a transverse stiffener, or pair of transverse stiffeners, or a doubler plate extending at least one-half the depth of the web shall be provided.

4. **Web Sidesway Buckling**

This section applies only to compressive single-concentrated forces applied to members where relative lateral movement between the loaded compression flange and the tension flange is not restrained at the point of application of the concentrated force.

The available strength of the web for the limit state of sidesway buckling shall be determined as follows:

Specification for Structural Steel Buildings, Public Review Draft dated March 1, 2009
AMERICAN INSTITUTE OF STEEL CONSTRUCTION
The nominal strength, R_n, shall be determined as follows:

(a) If the compression flange is restrained against rotation

(i) When $(h / t_w) / (l / b_f) \leq 2.3$

$$R_n = \frac{C_r t^2 f_f}{h^2} \left[1 + 0.4 \left(\frac{h / t_w}{l / b_f} \right)^3 \right]$$ \hspace{1cm} (J10-6)

(ii) When $(h / t_w) / (l / b_f) > 2.3$, the limit state of web sidesway buckling does not apply.

When the required strength of the web exceeds the available strength, local lateral bracing shall be provided at the tension flange or either a pair of transverse stiffeners or a doubler plate shall be provided.

(b) If the compression flange is not restrained against rotation

(i) When $(h / t_w) / (l / b_f) \leq 1.7$

$$R_n = \frac{C_r t^2 f_f}{h^2} \left[0.4 \left(\frac{h / t_w}{l / b_f} \right)^3 \right]$$ \hspace{1cm} (J10-7)

(ii) When $(h / t_w) / (l / b_f) > 1.7$, the limit state of web sidesway buckling does not apply.

When the required strength of the web exceeds the available strength, local lateral bracing shall be provided at both flanges at the point of application of the concentrated forces.

In Equations J10-6 and J10-7, the following definitions apply:

- $C_r = 960,000$ ksi (6.62×10^6 MPa) when $M_u < M_f$ (LRFD) or $1.5M_u < M_f$ (ASD) at the location of the force
- $C_r = 480,000$ ksi (3.31×10^6 MPa) when $M_u \geq M_f$ (LRFD) or $1.5M_u \geq M_f$ (ASD) at the location of the force
- $M_u =$ required flexural strength using ASD load combinations, kip-in. (N-mm)
- $M_u =$ design flexural strength, using LRFD load combinations, kip-in. (N-mm)
- $b_f =$ flange width, in. (mm)
- $h =$ clear distance between flanges less the fillet or corner radius for rolled shapes; distance between adjacent lines of fasteners or the clear distance between flanges when welds are used for built-up shapes, in. (mm)
- $l =$ largest laterally unbraced length along either flange at
the point of load, in. (mm)

User Note: For determination of adequate restraint, refer to Appendix 6.

5. Web Compression Buckling

This section applies to a pair of compressive single-concentrated forces or the compressive components in a pair of double-concentrated forces, applied at both flanges of a member at the same location.

The available strength for the limit state of web local buckling shall be determined as follows:

\[
R_n = \frac{24t_w^3 \sqrt{EF_{yw}}}{h} \quad (J10-8)
\]

\[\phi = 0.90 \text{ (LRFD)} \quad \Omega = 1.67 \text{ (ASD)}\]

When the pair of concentrated compressive forces to be resisted is applied at a distance from the member end that is less than \(d/2\), \(R_n\) shall be reduced by 50%.

When required, a single transverse stiffener, a pair of transverse stiffeners, or a doubler plate extending the full depth of the web shall be provided.

6. Web Panel Zone Shear

This section applies to double-concentrated forces applied to one or both flanges of a member at the same location.

The available strength of the web panel zone for the limit state of shear yielding shall be determined as follows:

\[\phi = 0.90 \text{ (LRFD)} \quad \Omega = 1.67 \text{ (ASD)}\]

The nominal strength, \(R_n\), shall be determined as follows:

(a) When the effect of panel-zone deformation on frame stability is not considered in the analysis:

(i) For \(P_r \leq 0.4P_c\)

\[R_n = 0.60F_{y}d_c t_w \quad (J10-9)\]

(ii) For \(P_r > 0.4P_c\)

\[R_n = 0.60F_{y}d_c t_w \left(1.4 - \frac{P_r}{P_c}\right) \quad (J10-10)\]
(b) When frame stability, including plastic panel-zone deformation, is considered in the analysis:

(i) For $P_r \leq 0.75P_c$

$$R_n = 0.60F_y d_c t_w \left(1 + \frac{3b_{cf} t_{cf}^2}{d_b d_c t_w}\right) \tag{J10-11}$$

(ii) For $P_r > 0.75P_c$

$$R_n = 0.60F_y d_c t_w \left(1 + \frac{3b_{cf} t_{cf}^2}{d_b d_c t_w}\right) \left(1.9 - \frac{1.2P_r}{P_y}\right) \tag{J10-12}$$

In Equations J10-9 through J10-12, the following definitions apply:

- $A = \text{column cross-sectional area, in.}^2 (\text{mm}^2)$
- $b_{cf} = \text{width of column flange, in. (mm)}$
- $d_b = \text{depth of beam, in. (mm)}$
- $d_c = \text{depth of column, in. (mm)}$
- $F_y = \text{specified minimum yield stress of the column web, ksi (MPa)}$
- $P_c = P_y$, kips (N) (LRFD)
- $P_c = 0.6P_y$, kips (N) (ASD)
- $P_r = \text{required strength using LRFD or ASD load combinations, kips (N)}$
- $P_y = F_y A$, axial yield strength of the column, kips (N)
- $t_{cf} = \text{thickness of the column flange, in. (mm)}$
- $t_w = \text{thickness of column web, in. (mm)}$

When required, doubler plate(s) or a pair of diagonal stiffeners shall be provided within the boundaries of the rigid connection whose webs lie in a common plane.

See Section J10.9 for doubler plate design requirements.

7. Unframed Ends of Beams and Girders

At unframed ends of beams and girders not otherwise restrained against rotation about their longitudinal axes, a pair of transverse stiffeners, extending the full depth of the web, shall be provided.

8. Additional Stiffener Requirements for Concentrated Forces

Stiffeners required to resist tensile concentrated forces shall be designed in accordance with the requirements of Section J4.1 and welded to the loaded flange and the web. The welds to the flange shall be sized for the difference between the required strength and available...
limit state strength. The stiffener to web welds shall be sized to transfer to the web the algebraic difference in tensile force at the ends of the stiffener.

Stiffeners required to resist compressive concentrated forces shall be designed in accordance with the requirements in Section J4.4 and shall either bear on or be welded to the loaded flange and welded to the web. The welds to the flange shall be sized for the difference between the required strength and the applicable limit state strength. The welds to the web shall be sized to transfer to the web the algebraic difference in compression force at the ends of the stiffener. For fitted bearing stiffeners, see Section J7.

Transverse full depth bearing stiffeners for compressive forces applied to a beam or plate girder flange(s) shall be designed as axially compressed members (columns) in accordance with the requirements of Sections E6.2 and J4.4. The member properties shall be determined using an effective length of 0.75h and a cross section composed of two stiffeners and a strip of the web having a width of 25tw at interior stiffeners and 12tw at the ends of members. The weld connecting full depth bearing stiffeners to the web shall be sized to transmit the difference in compressive force at each of the stiffeners to the web.

Transverse and diagonal stiffeners shall comply with the following additional requirements:

1. The width of each stiffener plus one-half the thickness of the column web shall not be less than one-third of the flange or moment connection plate width delivering the concentrated force.
2. The thickness of a stiffener shall not be less than one-half the thickness of the flange or moment connection plate delivering the concentrated load, nor less than the width divided by 16.
3. Transverse stiffeners shall extend a minimum of one-half the depth of the member except as required in J10.5 and J10.7.

9. Additional Doubler Plate Requirements for Concentrated Forces

Doubler plates required for compression strength shall be designed in accordance with the requirements of Chapter E.

Doubler plates required for tensile strength shall be designed in accordance with the requirements of Chapter D.

Doubler plates required for shear strength (see Section J10.6) shall be designed in accordance with the provisions of Chapter G.

Doubler plates shall comply with the following additional requirements:

1. The thickness and extent of the doubler plate shall provide the
(2) The doubler plate shall be welded to develop the proportion of the total force transmitted to the doubler plate.
CHAPTER K
DESIGN OF HSS AND BOX MEMBER CONNECTIONS

This chapter addresses connections to HSS members and box sections of uniform wall thickness.

User Note: Connections often govern the size of HSS members, especially the thickness of truss chords, and must be considered in the initial design.

The chapter is organized as follows:

K1. Concentrated Forces on HSS
K2. HSS-to-HSS Truss Connections
K3. HSS-to-HSS Moment Connections
K4. Welds to Branches

User Note: See also Chapter J for additional requirements for bolting to HSS. See Section J3.10(c) for through-bolts.

User Note: Connection dimensions must be within the limits of applicability. Limit states need only be checked when connection geometry or loading is within the parameters given in the description of the limit state.

K1. CONCENTRATED FORCES ON HSS

1. Definitions of Parameters

 \[B = \text{overall width of rectangular HSS member, measured 90 degrees to the plane of the connection}, \text{ in. (mm)} \]

 \[B_p = \text{width of plate, measured 90 degrees to the plane of the connection, in. (mm)} \]

 \[D = \text{chord diameter, in. (mm)} \]

 \[F_c = \text{available stress in chord, ksi (MPa)} \]

 \[F_y = \text{specified minimum yield stress of HSS member material, ksi (MPa)} \]

 \[F_{yp} = \text{specified minimum yield stress of plate, ksi (MPa)} \]

 \[F_u = \text{specified minimum tensile strength of HSS material, ksi (MPa)} \]

 \[H = \text{overall height of rectangular HSS member, measured in the plane of the connection, in. (mm)} \]

 \[l_b = \text{bearing length of the load, measured parallel to the axis of the HSS member, (or measured across the width of the HSS in the case of loaded cap plates), in. (mm)} \]

 \[t = \text{design wall thickness of HSS member, in. (mm)} \]

 \[t_p = \text{thickness of plate, in. (mm)} \]

2. Round HSS

 The available strength of connections with concentrated loads and within the limits in Table K1.1A shall be taken as shown in Table K1.1.
Table K1.1. Available Strengths of Plate-to-Round HSS Connections

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Connection Available Strength</th>
<th>Plate Bending</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse Plate T- and Cross-Connections</td>
<td>Limit state: HSS local yielding</td>
<td>In-Plane</td>
</tr>
<tr>
<td></td>
<td>Plate Axial Load:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_n \sin \theta = F_f t^2 \left[\frac{5.5}{1 - 0.81 \frac{B_p}{D}} \right] Q_f$ (K1-1)</td>
<td>$M_n = 0.5B_p R_n$</td>
</tr>
<tr>
<td></td>
<td>$\phi = 0.90$ (LRFD) $\Omega = 1.67$ (ASD)</td>
<td></td>
</tr>
<tr>
<td>Longitudinal Plate T-, Y- and Cross-Connections</td>
<td>Limit state: HSS plastification</td>
<td>In-Plane</td>
</tr>
<tr>
<td></td>
<td>Plate Axial Load:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_n \sin \theta = 5.5F_f t^2 \left[1 + 0.25 \frac{L}{D} \right] Q_f$ (K1-2)</td>
<td>$M_n = 0.8 \frac{L}{D} R_n$</td>
</tr>
<tr>
<td></td>
<td>$\phi = 0.90$ (LRFD) $\Omega = 1.67$ (ASD)</td>
<td></td>
</tr>
<tr>
<td>Longitudinal Plate (Shear Tab) T-Connections</td>
<td>Limit states: plate yielding and HSS punching shear</td>
<td>In-Plane</td>
</tr>
<tr>
<td></td>
<td>Plate Shear Load:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$t_p \leq \frac{F_{up}}{F_{yp}}$ (K1-3)</td>
<td></td>
</tr>
<tr>
<td>Cap Plate Connections</td>
<td>Limit state: local yielding of HSS</td>
<td>In-Plane</td>
</tr>
<tr>
<td></td>
<td>Axial Load:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_n = 2F_f t \left[5t_p + l_b \right] \leq AF_y$ (K1-4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\phi = 1.00$ (LRFD) $\Omega = 1.50$ (ASD)</td>
<td></td>
</tr>
</tbody>
</table>

FUNCTIONS

$Q_f = 1$ for HSS (connecting surface) in tension

$= 1.0 - 0.3U \left(1 + U \right)$ for HSS (connecting surface) in compression (K1-5)

Specification for Structural Steel Buildings, Public Review Draft dated March 1, 2009

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
\[U = \frac{P_{ro}}{AF_c} + \frac{M_{ro}}{SF_c} \]

where \(P_{ro} \) and \(M_{ro} \) are determined on the side of the joint that has the lower compression stress. \(P_{ro} \) and \(M_{ro} \) refer to loads in the HSS.

\(P_{ro} = P_L \) for LRFD; \(P_s \) for ASD. \(M_{ro} = M_L \) for LRFD; \(M_s \) for ASD. (K1-6)

Table K1.1A Limits of Applicability of Table K1.1

Plate load angle:	\(0 \geq 30' \)
HSS wall slenderness:	\(D/t \leq 50 \) for T-connections under branch plate axial load or bending
	\(D/t \leq 40 \) for Cross-connections under branch plate axial load or bending
	\(D/t \leq 0.11E/F_y \) under branch plate shear loading
	\(D/t \leq 0.11E/F_y \) for cap plate connections in compression
Width ratio:	\(0.2 < B_p/D \leq 1.0 \) for transverse branch plate connections
Material strength:	\(F_y \leq 52 \text{ ksi (360 MPa)} \)
Ductility:	\(F_y/F_u \leq 0.8 \)

3. **Rectangular HSS**

The available strength of connections with concentrated loads and within the limits in Table K1.2A shall be taken as the lowest value of the applicable limit states shown in Table K1.2.
Table K1.2. Available Strengths of Plate-to-Rectangular HSS Connections

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Connection Available Strength</th>
</tr>
</thead>
</table>
| Transverse Plate T- and Cross-Connections, under Plate Axial Load | Limit state: local yielding of plate, for all β
\[R_\eta = \frac{10}{B/t} F_y t B_p \leq F_{yp} t B_p \]
\[\phi = 0.95 \text{ (LRFD)} \quad \Omega = 1.58 \text{ (ASD)} \]
Limit state: HSS shear yielding (punching), when
\[0.85B \leq B_p \leq B - 2t \]
\[R_\eta = 0.6 F_{y} t \left[2t_p + 2B_{rp} \right] \]
\[\phi = 0.95 \text{ (LRFD)} \quad \Omega = 1.58 \text{ (ASD)} \]
Limit state: local yielding of HSS side walls, when β = 1.0
\[R_\eta = 2F_{y} t \left[5k + l_b \right] \]
\[\phi = 1.00 \text{ (LRFD)} \quad \Omega = 1.50 \text{ (ASD)} \]
Limit state: local crippling of HSS side walls, when β = 1.0 and plate is in compression, for T-connections
\[R_\eta = 1.6 t^2 \left[1 + \frac{3 t_b}{H - 3t} \right] \sqrt{EF_y Q_f} \]
\[\phi = 0.75 \text{ (LRFD)} \quad \Omega = 2.00 \text{ (ASD)} \]
Limit state: local crippling of HSS side walls, when β = 1.0 and plates are in compression, for Cross-connections
\[R_\eta = \frac{48 t^3}{H - 3t} \sqrt{EF_y Q_f} \]
\[\phi = 0.90 \text{ (LRFD)} \quad \Omega = 1.67 \text{ (ASD)} \]
| Longitudinal Plate T-, Y- and Cross-Connections, under Plate Axial Load | Limit state: HSS wall plastification
\[R_{\eta \sin \theta} = \frac{F_{f} t^2}{1 - \frac{t_p}{B}} \left[\frac{2l_b}{B} + 4 \sqrt{1 - \frac{t_p}{B} Q_f} \right] \]
\[\phi = 1.00 \text{ (LRFD)} \quad \Omega = 1.50 \text{ (ASD)} \]
Table K1.2 (continued)

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Connection Available Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal Through Plate T- and Y-Connections,</td>
<td>Limit state: HSS wall plastification</td>
</tr>
<tr>
<td>under Plate Axial Load</td>
<td>$R_{p} \sin \theta = \frac{2F_{p}t_{h}^{2}}{1 - \frac{t_{h}}{B}} \left[\frac{2l_{h}}{B} + 4 \sqrt{1 - \frac{t_{h}}{B}} Q_{f} \right]$</td>
</tr>
<tr>
<td></td>
<td>$\phi = 1.00 \text{ (LRFD)} \quad \Omega = 1.50 \text{ (ASD)}$</td>
</tr>
<tr>
<td>Longitudinal Plate (Shear Tab) T-Connections,</td>
<td>Limit states: plate yielding and HSS punching shear</td>
</tr>
<tr>
<td>under Plate Shear Load</td>
<td>$t_{h} \leq \frac{F_{p,t}}{F_{p,p}}$</td>
</tr>
<tr>
<td></td>
<td>$\phi = 1.00 \text{ (LRFD)} \quad \Omega = 1.50 \text{ (ASD)}$</td>
</tr>
<tr>
<td>Cap Plate Connections,</td>
<td>Limit state: local yielding of side walls</td>
</tr>
<tr>
<td>under Axial Load</td>
<td>$R_{p} = 2F_{p} \left[5t_{p} + l_{h} \right]$, when $\left(5t_{p} + l_{h} \right) < B$</td>
</tr>
<tr>
<td></td>
<td>$R_{p} = AF_{p}$, when $\left(5t_{p} + l_{h} \right) \geq B$</td>
</tr>
<tr>
<td></td>
<td>$\phi = 1.00 \text{ (LRFD)} \quad \Omega = 1.50 \text{ (ASD)}$</td>
</tr>
<tr>
<td></td>
<td>Limit state: local crippling of side walls, when plate is in compression</td>
</tr>
<tr>
<td></td>
<td>$R_{p} = 1.6t^{2} \left[1 + \frac{6l_{h}}{B} \left(\frac{t}{t_{p}} \right)^{1.5} \right] \times EF_{p} \left(\frac{l}{t} \right)$, when $\left(5t_{p} + l_{h} \right) < B$</td>
</tr>
</tbody>
</table>
| | $\phi = 0.75 \text{ (LRFD)} \quad \Omega = 2.00 \text{ (ASD)}$
FUNCTIONS

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_f = 1)</td>
<td>for HSS (connecting surface) in tension</td>
</tr>
<tr>
<td>(= 1.3 - 0.4 \frac{U}{\beta} \leq 1.0)</td>
<td>for HSS (connecting surface) in compression, for transverse plate connections</td>
</tr>
<tr>
<td>(= \sqrt{1-U^2})</td>
<td>for HSS (connecting surface) in compression, for longitudinal plate and longitudinal through plate connections</td>
</tr>
<tr>
<td>(U = \frac{P_{\text{rot}} + M_{\text{rot}}}{AF_c + SF_c})</td>
<td>where (P_{\text{rot}}) and (M_{\text{rot}}) are determined on the side of the joint that has the higher compression stress. (P_{\text{rot}}) and (M_{\text{rot}}) refer to loads in the HSS. (P_{\text{rot}} = P_a) for LRFD; (P_a) for ASD. (M_{\text{rot}} = M_a) for LRFD; (M_a) for ASD.</td>
</tr>
</tbody>
</table>

\(B_{ep} = \frac{10B_p}{B/t} \leq B_p \quad (K1-18) \)

\(k = \) outside corner radius of HSS \(\geq 1.5t \)
Table K1.2A Limits of Applicability of Table K1.2

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate load angle:</td>
<td>$\theta \geq 30^\circ$</td>
</tr>
<tr>
<td>HSS wall slenderness:</td>
<td>B/t or $H/t \leq 35$ for loaded wall, for transverse branch plate connections</td>
</tr>
<tr>
<td></td>
<td>B/t or $H/t \leq 40$ for loaded wall, for longitudinal branch plate and through plate connections</td>
</tr>
<tr>
<td></td>
<td>$(B-3t)/t$ or $(H-3t)/t \leq 1.40 \sqrt{E/F_y}$ for loaded wall, for branch plate shear loading</td>
</tr>
<tr>
<td>Width ratio:</td>
<td>$0.25 \leq B_p/B \leq 1.0$ for transverse branch plate connections</td>
</tr>
<tr>
<td>Material strength:</td>
<td>$F_y \leq 52$ ksi (360 MPa)</td>
</tr>
<tr>
<td>Ductility:</td>
<td>$F_y/F_u \leq 0.8$</td>
</tr>
</tbody>
</table>
K2. HSS-TO-HSS TRUSS CONNECTIONS

HSS-to-HSS truss connections are defined as connections that consist of one or more branch members that are directly welded to a continuous chord that passes through the connection and shall be classified as follows:

(a) When the punching load \((P_r \sin \theta)\) in a branch member is equilibrated by beam shear in the chord member, the connection shall be classified as a T-connection when the branch is perpendicular to the chord and a Y-connection otherwise.

(b) When the punching load \((P_r \sin \theta)\) in a branch member is essentially equilibrated (within 20%) by loads in other branch member(s) on the same side of the connection, the connection shall be classified as a K-connection. The relevant gap is between the primary branch members whose loads equilibrate. An N-connection can be considered as a type of K-connection.

User Note: A K-connection with one branch perpendicular to the chord is often called an N-connection.

(c) When the punching load \((P_r \sin \theta)\) is transmitted through the chord member and is equilibrated by branch member(s) on the opposite side, the connection shall be classified as a cross-connection.

(d) When a connection has more than two primary branch members, or branch members in more than one plane, the connection shall be classified as a general or multiplanar connection.

When branch members transmit part of their load as K-connections and part of their load as T-, Y-, or cross-connections, the adequacy of the connections shall be determined by interpolation on the proportion of the available strength of each in total.

For the purposes of this Specification, the centerlines of branch members and chord members shall lie in a common plane. Rectangular HSS connections are further limited to have all members oriented with walls parallel to the plane. For trusses that are made with HSS that are connected by welding branch members to chord members, eccentricities within the limits of applicability are permitted without consideration of the resulting moments for the design of the connection.

1. Definitions of Parameters

\[B = \text{overall width of rectangular HSS main member, measured 90° to the plane of the connection, in. (mm)} \]
\[B_b = \text{overall width of rectangular HSS branch member, measured 90° to the plane of the connection, in. (mm)} \]
\[D = \text{outside diameter of round HSS main member, in. (mm)} \]
\[D_b = \text{outside diameter of round HSS branch member, in. (mm)} \]
\[F_c = \text{available stress in chord, ksi (MPa)} \]
\[F_y = \text{specifed minimum yield stress of HSS main member material, ksi (MPa)} \]
\[F_{yb} = \text{specifed minimum yield stress of HSS branch member material, ksi (MPa)} \]
\[F_u = \text{specified minimum tensile strength of HSS material, ksi (MPa)} \]
\[H = \text{overall height of rectangular HSS main member, measured in the plane of the connection, in. (mm)} \]
\[H_b = \text{overall height of rectangular HSS branch member, measured in the plane of the connection, in. (mm)} \]
\[O_s = \frac{q}{p} \times 100, \% \]
\[e = \text{eccentricity in a truss connection, positive being away from the branches, in. (mm)} \]
\[g = \text{gap between toes of branch members in a gapped K-connection, neglecting the welds, in. (mm)} \]
\[l_p = \text{projected length of the overlapping branch on the chord, in. (mm)} \]
\[l_{ov} = \text{overlap length measured along the connecting face of the chord beneath the two branches, in. (mm)} \]
\[t = \text{design wall thickness of HSS main member, in. (mm)} \]
\[t_b = \text{design wall thickness of HSS branch member, in. (mm)} \]
\[\beta = \text{the width ratio; the ratio of branch diameter to chord diameter} = \frac{D_b}{D} \]
\[\beta_{eff} = \text{the effective width ratio; the sum of the perimeters of the two branch members in a K-connection divided by eight times the chord width} \]
\[\gamma = \text{the chord slenderness ratio; the ratio of one-half the diameter to the wall thickness} = \frac{D}{2t} \text{ for round HSS; the ratio of one-half the width to wall thickness} = \frac{B}{2t} \text{ for rectangular HSS} \]
\[\eta = \text{the load length parameter, applicable only to rectangular HSS; the ratio of the length of contact of the branch with the chord in the plane of the connection to the chord width} = \frac{N}{B}, \text{where } N=H_b \sin \theta \]
\[\theta = \text{acute angle between the branch and chord (degrees)} \]
\[\zeta = \text{the gap ratio; the ratio of the gap between the branches of a gapped K-connection to the width of the chord} = \frac{g}{B} \text{ for rectangular HSS} \]

2. Round HSS

The available strength of HSS to HSS truss connections within the limits in Table K2.1A shall be taken as the lowest value of the applicable limit states shown in Table K2.1.
Table K2.1. Available Strengths of Round HSS-to-HSS Truss Connections

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Connection Available Axial Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Check</td>
<td>Limit state: shear yielding (punching)</td>
</tr>
<tr>
<td>For T-, Y-, Cross- and K-Connections with gap, when (D_b \text{ (tens/comp)} < (D - 2t))</td>
<td>(P_n = 0.6 F_t f_t D_b \left[\frac{1 + \sin \theta}{2 \sin^2 \theta} \right]) (\phi = 0.95) (LRFD) (\Omega = 1.58) (ASD)</td>
</tr>
<tr>
<td>T- and Y-Connections</td>
<td>Limit state: chord plastification</td>
</tr>
<tr>
<td></td>
<td>(P_n \sin \theta = F_t f_t^2 \left[3.1 + 15.6 \beta^2 \right] \gamma^{0.2} Q_f) (\phi = 0.90) (LRFD) (\Omega = 1.67) (ASD)</td>
</tr>
<tr>
<td>Cross-Connections</td>
<td>Limit state: chord plastification</td>
</tr>
<tr>
<td></td>
<td>(P_n \sin \theta = F_t f_t^2 \left[\frac{5.7}{1 - 0.8 \gamma} \right] Q_f) (\phi = 0.90) (LRFD) (\Omega = 1.67) (ASD)</td>
</tr>
<tr>
<td>K-Connections with gap or overlap</td>
<td>Limit state: chord plastification</td>
</tr>
<tr>
<td></td>
<td>((P_n \sin \theta){\text{compression branch}} = F_t f_t^2 \left[2.0 + 11.33 \frac{D_b \text{ comp}}{D} \right] Q_f) ((P_n \sin \theta){\text{tension branch}} = (P_n \sin \theta)_{\text{compression branch}}) (\phi = 0.90) (LRFD) (\Omega = 1.67) (ASD)</td>
</tr>
</tbody>
</table>
FUNCTIONS

\(Q_f = 1 \) for chord (connecting surface) in tension

\[
U = \frac{P_{ro}}{AF_c} + \frac{M_{ro}}{SF_c}
\]

where \(P_{ro} \) and \(M_{ro} \) are determined on the side of the joint that has the lower compression stress. \(P_{ro} \) and \(M_{ro} \) refer to loads in the chord. \(P_{ro} = P_u \) for LRFD; \(P_{ro} = P_a \) for ASD. \(M_{ro} = M_u \) for LRFD; \(M_{ro} = M_a \) for ASD.

\[
Q_s = \left[1 + \frac{0.024t^{1.2}}{\exp \left(\frac{0.5g}{t} - 1.33 \right) + 1} \right]^{1/2}
\]

Table K2.1A Limits of Applicability of Table K2.1

<table>
<thead>
<tr>
<th>Limit</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint eccentricity</td>
<td>-0.55 ≤ (e/D) ≤ 0.25 for K-connections</td>
</tr>
<tr>
<td>Branch angle</td>
<td>(\theta \geq 30\degree)</td>
</tr>
<tr>
<td>Chord wall slenderness</td>
<td>(D/t \leq 50) for T-, Y- and K-connections</td>
</tr>
<tr>
<td>Branch wall slenderness</td>
<td>(D/t \leq 40) for Cross-connections</td>
</tr>
<tr>
<td>Branch wall slenderness</td>
<td>(D_b/t_b \leq 50) for tension branch</td>
</tr>
<tr>
<td>Width ratio</td>
<td>(0.2 < D_b/D \leq 1.0) for T-, Y-, Cross- and overlapped K-connections</td>
</tr>
<tr>
<td>Width ratio</td>
<td>(0.4 \leq D_b/D \leq 1.0) for overlapped K-connections</td>
</tr>
<tr>
<td>Gap</td>
<td>(g \geq f_{tb \text{ comp}} + f_{tb \text{ tens}}) for gapped K-connections</td>
</tr>
<tr>
<td>Overlap</td>
<td>(25% \leq O_t \leq 100%) for overlapped K-connections</td>
</tr>
<tr>
<td>Branch thickness</td>
<td>(t_{b \text{ overlapping}} \leq t_{b \text{ overlapped}}) for branches in overlapped K-connections</td>
</tr>
<tr>
<td>Material strength</td>
<td>(F_y) and (F_{yb} \leq 52) ksi (360 MPa)</td>
</tr>
<tr>
<td>Ductility</td>
<td>(F_y/F_u) and (F_{yb}/F_{ub} \leq 0.8)</td>
</tr>
</tbody>
</table>

3. Rectangular HSS

The available strength of HSS-to-HSS truss connections within the limits in Table K2.2A shall be taken as the lowest value of the applicable limit states shown in Table K2.2.
Table K2.2. Available Strengths of Rectangular HSS-to-HSS Truss Connections

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Connection Available Axial Strength</th>
</tr>
</thead>
</table>
| Limit state: chord wall plastification, when \(\beta \leq 0.85 \) | \[
P_n \sin \theta = F_y t^2 \left[\frac{2 \eta}{(1-\beta)} + \frac{4}{\sqrt{1-\beta}} \right] Q_f \]
| \(\phi = 1.00 \) (LRFD) \(\Omega = 1.50 \) (ASD) | (K2-7) |
| Limit state: shear yielding (punching), when \(0.85 < \beta \leq 1-\frac{1}{\sqrt{3}} \) or \(B/t < 10 \) | \[
P_n \sin \theta = 0.6 F_y t B \left[2 \eta + 2 \beta \sin \frac{\theta}{2} \right] \]
| \(\phi = 0.95 \) (LRFD) \(\Omega = 1.58 \) (ASD) | (K2-8) |
| Limit state: local yielding of chord side walls, when \(\beta = 1.0 \) | \[
P_n \sin \theta = 2 F_y t \left[\frac{5k}{2} + l_b \right] \]
| \(\phi = 1.00 \) (LRFD) \(\Omega = 1.50 \) (ASD) | (K2-9) |
| Limit state: local crippling of chord side walls, when \(\beta = 1.0 \) and branch is in compression, for T- or Y-connections | \[
P_n \sin \theta = 1.6 t^2 \left[1 + \frac{3b}{H - 3t} \right] \sqrt{E F_y Q_f} \]
| \(\phi = 0.75 \) (LRFD) \(\Omega = 2.00 \) (ASD) | (K2-10) |
| Limit state: local crippling of chord side walls, when \(\beta = 1.0 \) and branches are in compression, for Cross-connections | \[
P_n \sin \theta = \frac{48t^3}{H - 3t} \sqrt{E F_y Q_f} \]
| \(\phi = 0.90 \) (LRFD) \(\Omega = 1.67 \) (ASD) | (K2-11) |
| Limit state: local yielding of branch/branches due to uneven load distribution, when \(\beta > 0.85 \) | \[
P_n = F_y t b \left[2H_b + 2b_{eq} - 4t_b \right] \]
| \(\phi = 0.95 \) (LRFD) \(\Omega = 1.58 \) (ASD) | (K2-12) |
| \(b_{eq} = \frac{10}{B/t} \left(\frac{F_y t}{F_y t_b} \right) B_b \leq B_b \) | (K2-13) |

Case for checking limit state of shear of chord side walls

Gapped K-Connections

Limit state: chord wall plastification, for all \(\beta \)

Specification for Structural Steel Buildings, Public Review Draft dated March 1, 2009

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
<table>
<thead>
<tr>
<th>(P_n \sin \theta = F_y I^2 \left[9.8 \beta_{\text{eff}}^{0.5} \right] Q_{f})</th>
<th>(K2-14)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\phi = 0.90) (LRFD) (\Omega = 1.67) (ASD)</td>
<td></td>
</tr>
</tbody>
</table>

Limit state: shear yielding (punching), when \(B_n < B - 2t \)

Do not check for square branches

\[
P_n \sin \theta = 0.6 F_y t B \left[2 \eta + \beta + \beta_{\text{cop}} \right]
\]

| \(\phi = 0.95 \) (LRFD) \(\Omega = 1.58 \) (ASD) | (K2-15) |
Table K2.2 (continued)

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Connection Available Axial Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gapped K-Connections (continued)</td>
<td>Limit state: shear of chord side walls in the gap region. Determine $P_n \sin \theta$ in accordance with Spec. Section G5. Do not check for square chords.</td>
</tr>
<tr>
<td></td>
<td>Limit state: local yielding of branch/branches due to uneven load distribution. Do not check for square branches or if $B/t \geq 15$</td>
</tr>
<tr>
<td></td>
<td>$P_n = F_{ybi} t_b \left[2H_{bi} + B_{bi} + b_{eoi} - 4t_b \right]$</td>
</tr>
<tr>
<td></td>
<td>$\phi = 0.95$ (LRFD) $\Omega = 1.58$ (ASD)</td>
</tr>
<tr>
<td></td>
<td>$b_{eoi} = \frac{10}{B/t} \left(\frac{F_{ybi} t_b}{F_{ybi} t_b} \right) B_{bi} \leq B_{bi}$</td>
</tr>
</tbody>
</table>

Overlapped K-Connections	Limit state: local yielding of branch/branches due to uneven load distribution.
	$\phi = 0.95$ (LRFD) $\Omega = 1.58$ (ASD)
	when $25\% \leq O_v < 50\%$: \quad $P_n, \text{overlapping branch} = F_{ybi} t_b \left[\frac{O_v}{50} (2H_{bi} - 4t_{bi}) + b_{eoi} + b_{eov} \right]$
	when $50\% \leq O_v < 80\%$: \quad $P_n, \text{overlapping branch} = F_{ybi} t_b \left[2H_{bi} - 4t_{bi} + b_{eoi} + b_{eov} \right]$
	when $80\% \leq O_v \leq 100\%$: \quad $P_n, \text{overlapping branch} = F_{ybi} t_b \left[2H_{bi} - 4t_{bi} + B_{bi} + b_{eov} \right]$
	$b_{eoi} = \frac{10}{B/t} \left(\frac{F_{ybi} t_b}{F_{ybi} t_b} \right) B_{bi} \leq B_{bi}$
	$b_{eov} = \frac{10}{B_{bi}/t_{bi}} \left(\frac{F_{ybi} t_{bi}}{F_{ybi} t_{bi}} \right) B_{bi} \leq B_{bi}$

Note that the force arrows shown for overlapped K-connections may be reversed; i and j control member identification

Subscript i refers to the overlapping branch

Subscript j refers to the overlapped branch

$P_n, \text{overlapping branch} = P_n, \text{overlapping branch} \left(\frac{A_{bi} F_{ybi}}{A_{bi} F_{ybi}} \right)$
FUNCTIONS

\[Q_i = 1 \text{ for chord (connecting surface) in tension} \]

\[= 1.3 - 0.4 \frac{U}{\beta} \leq 1.0 \text{ for chord (connecting surface) in compression, for T-, Y-, and Cross-connections} \]
\[(K1-16)\]

\[= 1.3 - 0.4 \frac{U}{\beta_{eff}} \leq 1.0 \text{ for chord (connecting surface) in compression, for gapped K-connections} \]
\[(K2-23)\]

\[U = \frac{P_{\rho}}{AF_c} + \frac{M_{\rho}}{SF_c} \text{, where } P_{\rho} \text{ and } M_{\rho} \text{ are determined on the side of the joint that has the higher compression stress. } P_{\rho} \text{ and } M_{\rho} \text{ refer to loads in the chord. } P_{\rho} = P_u \text{ for LRFD;} \]

\[P_u \text{ for ASD. } M_{\rho} = M_u \text{ for LRFD; } M_u \text{ for ASD.} \]
\[(K1-6)\]

\[\beta_{eff} = \left[(B_o + H_o) \text{ compression branch} + (B_o + H_o) \text{ tension branch} \right] / 4B \]
\[(K2-24)\]

\[\beta_{exp} = \frac{5\beta}{\gamma} \leq \beta \]
\[(K2-25)\]
Table K2.2A Limits of Applicability of Table K2.2

<table>
<thead>
<tr>
<th>Limit</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint eccentricity:</td>
<td>$-0.55 \leq e/H \leq 0.25$ for K-connections</td>
</tr>
<tr>
<td>Branch angle:</td>
<td>$\theta \geq 30^\circ$</td>
</tr>
<tr>
<td>Chord wall slenderness:</td>
<td>B/t and $H/t \leq 35$ for gapped K-connections and T-, Y- and Cross-connections</td>
</tr>
<tr>
<td>Branch wall slenderness:</td>
<td>$B/t \leq 30$ for overlapped K-connections</td>
</tr>
<tr>
<td></td>
<td>$H/t \leq 35$ for overlapped K-connections</td>
</tr>
<tr>
<td></td>
<td>B_b/t_b and $H_b/t_b \leq 35$ for tension branch</td>
</tr>
<tr>
<td></td>
<td>$\leq 1.25 \frac{E}{F_y b}$ for compression branch of gapped K-, T-, Y- and Cross-connections</td>
</tr>
<tr>
<td></td>
<td>≤ 35 for compression branch of overlapped K-connections</td>
</tr>
<tr>
<td>Width ratio:</td>
<td>B_b/B and $H_b/B \geq 0.25$ for T-, Y-, Cross- and overlapped K-connections</td>
</tr>
<tr>
<td>Aspect ratio:</td>
<td>$0.5 \leq H_b/B_b \leq 2.0$ and $0.5 \leq H/B \leq 2.0$</td>
</tr>
<tr>
<td>Overlap:</td>
<td>$25% \leq O \leq 100%$ for overlapped K-connections</td>
</tr>
<tr>
<td>Branch width ratio:</td>
<td>$B_b/B \geq 0.75$ for overlapped K-connections, where subscript i refers to the overlapping branch and subscript j refers to the overlapped branch</td>
</tr>
<tr>
<td>Branch thickness ratio:</td>
<td>$t_i/t_j \leq 1.0$ for overlapped K-connections, where subscript i refers to the overlapping branch and subscript j refers to the overlapped branch</td>
</tr>
<tr>
<td>Material strength:</td>
<td>F_y and $F_{yb} \leq 52$ ksi (360 MPa)</td>
</tr>
<tr>
<td>Ductility:</td>
<td>F_y/F_u and $F_{yb}/F_{ub} \leq 0.8$</td>
</tr>
</tbody>
</table>

Additional limits for gapped K-connections

Width ratio:	B_b/B and $H_b/B \geq 0.1 + \beta_{eff}$
	$\beta_{eff} \geq 0.35$
Gap ratio:	$\zeta = g/B \geq 0.5 (1-\beta_{eff})$
Gap:	$g \geq t_i$ compression branch $+ t_j$ tension branch
Branch size:	smaller $B_b \geq 0.63 (larger B_b)$, if both branches are square

Note: Maximum gap size will be controlled by the e/H limit. If gap is large, treat as two Y-connections.

K3. HSS-TO-HSS MOMENT CONNECTIONS

HSS-to-HSS moment connections are defined as connections that consist of one or two branch members that are directly welded to a continuous chord that passes through the connection, with the branch or branches loaded by bending moments.

A connection shall be classified as:

(a) A *T-connection* when there is one branch and it is perpendicular to the chord and as a *Y-connection* when there is one branch but not perpendicular to the chord.

(b) A *cross-connection* when there is a branch on each (opposite) side of
the chord.

For the purposes of this Specification, the centerlines of the branch member(s) and the chord member shall lie in a common plane.

1. Definitions of Parameters

\[B = \text{overall width of rectangular HSS main member, measured 90 degrees to the plane of the connection, in. (mm)} \]
\[B_b = \text{overall width of rectangular HSS branch member, measured 90 degrees to the plane of the connection, in. (mm)} \]
\[D = \text{outside diameter of round HSS main member, in. (mm)} \]
\[D_b = \text{outside diameter of round HSS branch member, in. (mm)} \]
\[F_c = \text{Available stress in chord, ksi (MPa)} \]
\[= F_y \text{ for LRFD; } 0.6F_y \text{ for ASD} \]
\[F_{yb} = \text{specified minimum yield stress of HSS branch member, ksi (MPa)} \]
\[F_u = \text{ultimate strength of HSS member, ksi (MPa)} \]
\[H = \text{overall height of rectangular HSS main member, measured in the plane of the connection, in. (mm)} \]
\[H_b = \text{overall height of rectangular HSS branch member, measured in the plane of the connection, in. (mm)} \]
\[t = \text{design wall thickness of HSS main member, in. (mm)} \]
\[t_b = \text{design wall thickness of HSS branch member, in. (mm)} \]
\[\beta = \text{the width ratio; the ratio of branch diameter to chord diameter} = \frac{D_b}{D} \]
\[\gamma = \text{the chord slenderness ratio; the ratio of one-half the diameter to the wall thickness} = \frac{D}{2t} \text{ for round HSS; the ratio of one-half the width to wall thickness} = \frac{B}{2t} \text{ for rectangular HSS} \]
\[\eta = \text{the load length parameter, applicable only to rectangular HSS; the ratio of the length of contact of the branch with the chord in the plane of the connection to the chord width} = \frac{N}{B}, \text{ where } N = H_b \]
\[\theta = \text{acute angle between the branch and chord (degrees)} \]
2. Round HSS

The available strength of moment connections within the limits of Table K3.1A shall be taken as the lowest value of the applicable limit states shown in Table K3.1.
Table K3.1. Available Capacities of Round HSS-to-HSS Moment Connections

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Connection Available Moment Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch(es) under In-Plane Bending</td>
<td>Limit state: chord plastification</td>
</tr>
<tr>
<td>T-, Y- and Cross-Connections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$M_n \sin \theta = 5.39 F_y \gamma^2 \beta D_b Q_t$ (K3-1)</td>
</tr>
<tr>
<td></td>
<td>$\phi = 0.90$ (LRFD) $\Omega = 1.67$ (ASD)</td>
</tr>
<tr>
<td></td>
<td>Limit state: shear yielding (punching), when $D_b < (D - 2t)$</td>
</tr>
<tr>
<td></td>
<td>$M_n = 0.6 F_y t D_b^2 \left[\frac{1 + 3 \sin \theta}{4 \sin^2 \theta} \right]$ (K3-2)</td>
</tr>
<tr>
<td></td>
<td>$\phi = 0.95$ (LRFD) $\Omega = 1.58$ (ASD)</td>
</tr>
<tr>
<td>Branch(es) under Out-of-Plane Bending</td>
<td>Limit state: chord plastification</td>
</tr>
<tr>
<td>T-, Y- and Cross-Connections</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$M_n \sin \theta = F_y t^2 D_b \left[\frac{3.0}{1 - 0.8 \beta} \right] Q_t$ (K3-3)</td>
</tr>
<tr>
<td></td>
<td>$\phi = 0.90$ (LRFD) $\Omega = 1.67$ (ASD)</td>
</tr>
<tr>
<td></td>
<td>Limit state: shear yielding (punching), when $D_b < (D - 2t)$</td>
</tr>
<tr>
<td></td>
<td>$M_n = 0.6 F_y t D_b^2 \left[\frac{3 + \sin \theta}{4 \sin^2 \theta} \right]$ (K3-4)</td>
</tr>
<tr>
<td></td>
<td>$\phi = 0.95$ (LRFD) $\Omega = 1.58$ (ASD)</td>
</tr>
</tbody>
</table>
For T-, Y- and Cross-connections, with branch(es) under combined axial load, in-plane bending and out-of-plane bending, or any combination of these load effects:

LRFD:

\[
\frac{P_n}{\phi P_n} + \left[\frac{M_{r-ip}}{\phi M_{n-ip}} \right]^2 + \left[\frac{M_{r-op}}{\phi M_{n-op}} \right] \leq 1.0
\]

\[
(K3-5)
\]

ASD:

\[
\frac{P_n}{(P_n/\Omega)} + \left[\frac{M_{r-ip}}{(M_{n-ip}/\Omega)} \right]^2 + \left[\frac{M_{r-op}}{(M_{n-op}/\Omega)} \right] \leq 1.0
\]

\[
(K3-6)
\]

\(\phi P_n\) = design strength (or \(P_n/\Omega\) = allowable strength) obtained from Table K2.1

\(\phi M_{n-ip}\) = design strength (or \(M_{n-ip}/\Omega\) = allowable strength) for in-plane bending

\(\phi M_{n-op}\) = design strength (or \(M_{n-op}/\Omega\) = allowable strength) for out-of-plane bending

\(M_{r-ip}\) = \(M_{u-ip}\) for LRFD; \(M_{a-ip}\) for ASD

\(M_{r-op}\) = \(M_{u-op}\) for LRFD; \(M_{a-op}\) for ASD

FUNCTIONS

\(Q_i = 1\) for chord (connecting surface) in tension

\[Q_i = 1.0 - 0.3U(1+U)\] for chord (connecting surface) in compression

\[U = \frac{P_{ro}}{AF_c} + \frac{M_{ro}}{SF_c}\]

where \(P_{ro}\) and \(M_{ro}\) refer to loads in the chord. \(P_{uo} = P_u\) for LRFD; \(P_{a}\) for ASD.

\[M_{ro} = M_u\] for LRFD; \(M_a\) for ASD.
Table K3.1A Limits of Applicability of Table K3.1

<table>
<thead>
<tr>
<th>Limit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch angle</td>
<td>$\theta \geq 30^\circ$</td>
</tr>
<tr>
<td>Chord wall slenderness</td>
<td>$D/t \leq 50$ for T- and Y-connections</td>
</tr>
<tr>
<td></td>
<td>$D/t \leq 40$ for Cross-connections</td>
</tr>
<tr>
<td>Branch wall slenderness</td>
<td>$D_b/t_b \leq 50$</td>
</tr>
<tr>
<td></td>
<td>$D_b/t_b \leq 0.05E/F_{yb}$</td>
</tr>
<tr>
<td>Width ratio</td>
<td>$0.2 < D_b/D \leq 1.0$</td>
</tr>
<tr>
<td>Material strength</td>
<td>F_y and $F_{yb} \leq 52$ ksi (360 MPa)</td>
</tr>
<tr>
<td>Ductility</td>
<td>F_y/F_u and $F_{yb}/F_{ub} \leq 0.8$</td>
</tr>
</tbody>
</table>
3. Rectangular HSS

The available strength of moment connections within the limits of Table K3.2A shall be taken as the lowest value of the applicable limit states shown in Table K3.2.

Table K3.2. Available Capacities of Rectangular HSS-to-HSS Moment Connections

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Connection Available Moment Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch(es) under In-Plane Bending</td>
<td>Limit state: chord wall plastification, when $\beta \leq 0.85$</td>
</tr>
<tr>
<td>T- and Cross-Connections</td>
<td>$M_n = F_y t^2 H_b \left[\frac{1}{2\eta} + \frac{2}{\sqrt{1-\beta}} \frac{\eta}{(1-\beta)} \right] Q_f$ (K3-7)</td>
</tr>
<tr>
<td></td>
<td>$\phi = 1.00$ (LRFD) $\Omega = 1.50$ (ASD)</td>
</tr>
<tr>
<td></td>
<td>Limit state: sidewall local yielding, when $\beta > 0.85$</td>
</tr>
<tr>
<td></td>
<td>$M_n = 0.5F_y t (H_b + 5t)^2$</td>
</tr>
<tr>
<td></td>
<td>$\phi = 1.00$ (LRFD) $\Omega = 1.50$ (ASD)</td>
</tr>
<tr>
<td></td>
<td>Limit state: local yielding of branch/branches due to uneven load distribution, when $\beta > 0.85$</td>
</tr>
<tr>
<td></td>
<td>$M_n = F_y \left(Z_b - 0.5 \left(1 - \frac{b_{out}}{B_b} \right) B_b H_b t_{PB} \right)$</td>
</tr>
<tr>
<td></td>
<td>$\phi = 0.95$ (LRFD) $\Omega = 1.58$ (ASD)</td>
</tr>
<tr>
<td>Branch(es) under Out-of-Plane Bending</td>
<td>Limit state: chord wall plastification, when $\beta \leq 0.85$</td>
</tr>
<tr>
<td>T- and Cross-Connections</td>
<td>$M_n = F_y t \left[\frac{0.5H_b (1+\beta)}{(1-\beta)} + \frac{2BB_b (1+\beta)}{(1-\beta)} \right] Q_f$ (K3-10)</td>
</tr>
<tr>
<td></td>
<td>$\phi = 1.00$ (LRFD) $\Omega = 1.50$ (ASD)</td>
</tr>
<tr>
<td></td>
<td>Limit state: sidewall local yielding, when $\beta > 0.85$</td>
</tr>
<tr>
<td></td>
<td>$M_n = F_y t (B - t)(H_b + 5t)$</td>
</tr>
<tr>
<td></td>
<td>$\phi = 1.00$ (LRFD) $\Omega = 1.50$ (ASD)</td>
</tr>
<tr>
<td></td>
<td>Limit state: local yielding of branch/branches due to uneven load distribution, when $\beta > 0.85$</td>
</tr>
<tr>
<td></td>
<td>$M_n = F_y \left(Z_b - 0.5 \left(1 - \frac{b_{out}}{B_b} \right) B_b^2 t_{PB} \right)$</td>
</tr>
<tr>
<td></td>
<td>$\phi = 0.95$ (LRFD) $\Omega = 1.58$ (ASD)</td>
</tr>
</tbody>
</table>
Limit state: chord distortional failure, for T-connections and unbalanced Cross-connections

\[
M_n = 2F_{yt} \left[H_b t + \sqrt{B Ht (B + H)} \right] \tag{K3-13}
\]

\[
\phi = 1.00 \text{ (LRFD)} \quad \Omega = 1.50 \text{ (ASD)}
\]
Table K3.2 (continued)

For T- and Cross-connections, with branch(es) under combined axial load, in-plane bending and out-of-plane bending, or any combination of these load effects:

LRFD: \[\frac{P_n}{\phi P_n} + \left(\frac{M_{\text{ip}}}{\phi M_{n-\text{ip}}} \right) + \left(\frac{M_{\text{op}}}{\phi M_{n-\text{op}}} \right) \leq 1.0 \]

ASD: \[\frac{P_n}{(P_n/\Omega)} + \left(\frac{M_{\text{ip}}}{(M_{n-\text{ip}}/\Omega)} \right) + \left(\frac{M_{\text{op}}}{(M_{n-\text{op}}/\Omega)} \right) \leq 1.0 \]

\(\phi P_n = \) design strength (or \(P_n/\Omega = \) allowable strength) obtained from Table K2.2,
\(\phi M_{n-\text{ip}} = \) design strength (or \(M_{n-\text{ip}}/\Omega = \) allowable strength) for in-plane bending (above),
\(\phi M_{n-\text{op}} = \) design strength (or \(M_{n-\text{op}}/\Omega = \) allowable strength) for out-of-plane bending (above)

\(M_{n-\text{ip}} = M_{\text{ip}} \) for LRFD; \(M_{\text{ip}} \) for ASD
\(M_{n-\text{op}} = M_{\text{op}} \) for LRFD; \(M_{\text{op}} \) for ASD

FUNCTIONS

\(Q_i = 1 \) for chord (connecting surface) in tension
\(= 1.3 - 0.4 \frac{U}{\beta} \leq 1.0 \) for chord (connecting surface) in compression

\(U = \frac{P_{ro} + M_{ro}}{AF_c + \frac{M_{ro}}{SF_c}} \), where \(P_{ro} \) and \(M_{ro} \) refer to loads in the chord. \(P_{ro} = P_u \) for LRFD; \(P_a \) for ASD.
\(M_{ro} = M_u \) for LRFD; \(M_a \) for ASD.

\(F'_{y} = F_y \) for T-connections and \(= 0.8F_y \) for Cross-connections

\(b_{eqi} = \frac{10}{B/t} \left(\frac{F_{y}t}{F_{yb}t_b} \right) B_b \leq B_b \)

Table K3.2A Limits of Applicability of Table K3.2

Branch angle:	\(0 \approx 90^\circ \)
Chord wall slenderness:	\(B/t \) and \(H/t \leq 35 \)
Branch wall slenderness:	\(B_b/t_b \) and \(H_b/t_b \leq 35 \)
Width ratio:	\(B_b/B \geq 0.25 \)
Aspect ratio:	\(0.5 \leq H_b/B_b \leq 2.0 \) and \(0.5 \leq H/B \leq 2.0 \)
Material strength:	\(F_y \) and \(F_{yb} \leq 52 \) ksi (360 MPa)
Ductility:	\(F_y/F_u \) and \(F_{yb}/F_{ub} \leq 0.8 \)

K4. WELDS TO BRANCHES

The non-uniformity of load transfer along the line of weld, due to differences in relative flexibility of HSS walls in HSS-to-HSS connections, shall be considered in proportioning such welds. This can be accomplished by determining the available strength of branch connection welds as follows:

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
\[R_n = F_w t_w l_e \]

(K4-1)

\[M_{n,ip} = F_w t_w S_{ip} \]

(K4-2)

\[M_{n,op} = F_w t_w S_{op} \]

(K4-3)

For fillet welds

\[\phi = 0.75 \text{ (LRFD)} \quad \Omega = 2.00 \text{ (ASD)} \]

For partial-joint-penetration groove welds

\[\phi = 0.80 \text{ (LRFD)} \quad \Omega = 1.88 \text{ (ASD)} \]

where

\[F_w = \text{nominal strength of the weld metal per unit area (Chapter J) with no increase in strength due to directionality of load, ksi (MPa)} \]

\[S_{ip} = \text{weld effective elastic section modulus per unit length for in-plane bending (Table K4.1), in.}^2 \text{ (mm}^2) \]

\[S_{op} = \text{weld effective elastic section modulus per unit length for out-of-plane bending (Table K4.1), in.}^2 \text{ (mm}^2) \]

\[l_e = \text{total effective weld of groove and fillet welds to rectangular HSS.} \]

\[t_w = \text{smallest effective weld throat thickness around the perimeter of branch or plate, in. (mm)} \]
Table K4.1. Weld Capacity of Rectangular HSS-to-HSS Truss Connections

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Connection Weld Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse Plate T- and Cross-Connections</td>
<td>Effective Weld Properties</td>
</tr>
<tr>
<td>under Plate Axial Load</td>
<td>$l_c = 2\left(\frac{10}{B/t}\right)\left(\frac{F_t}{F_{y,p}}\right)B_p \leq 2B_p$</td>
</tr>
<tr>
<td></td>
<td>where $l_c =$ total effective weld length for welds on both sides of the transverse plate</td>
</tr>
<tr>
<td></td>
<td>(K4-1)</td>
</tr>
<tr>
<td>T-, Y-, and Cross-Connections</td>
<td>Effective Weld Properties</td>
</tr>
<tr>
<td>under Branch Axial Load or Bending</td>
<td>$l_c = \frac{2H_b}{\sin\theta} + 2b_{eoi}$</td>
</tr>
<tr>
<td></td>
<td>(K4-2)</td>
</tr>
<tr>
<td></td>
<td>$S_{bp} = 0.333\left(\frac{H_b}{\sin\theta}\right)^2 + b_{eoi}\left(\frac{H_b}{\sin\theta}\right)$</td>
</tr>
<tr>
<td></td>
<td>(K4-3)</td>
</tr>
<tr>
<td></td>
<td>$S_{sp} = \left(\frac{H_b}{\sin\theta}\right)B_b + 0.333B_b^2 - 0.333(B_b - b_{eoi})^2$</td>
</tr>
<tr>
<td></td>
<td>(K4-4)</td>
</tr>
<tr>
<td></td>
<td>$b_{eoi} = \frac{10}{B/t}\left(\frac{F_t}{F_{y,p}}\right)B_b \leq B_b$</td>
</tr>
<tr>
<td></td>
<td>(K2-13)</td>
</tr>
<tr>
<td></td>
<td>when $\beta > 0.85$ or $\theta > 50^\circ$, b_{eoi} shall not exceed $2t$</td>
</tr>
<tr>
<td></td>
<td>and when $\beta = 1.0$, $B_b = B_b - t$</td>
</tr>
<tr>
<td>Gapped K-Connections</td>
<td>Effective Weld Properties</td>
</tr>
<tr>
<td>under Branch Axial Load</td>
<td>when $0 \leq 50^\circ$: $l_c = \frac{2(H_b - 1.2t)}{\sin\theta} + 2(B_b - 1.2t)$</td>
</tr>
<tr>
<td></td>
<td>(K4-5)</td>
</tr>
<tr>
<td></td>
<td>when $0 \geq 60^\circ$:</td>
</tr>
</tbody>
</table>

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
\[l_e = \frac{2(H_b - 1.2t_b)}{\sin \theta} + (B_b - 1.2t_b) \]

(K4-6)

when \(50^\circ < \theta < 60^\circ \)

Linear interpolation shall be used to determine \(l_e \).
Overlapped Member Effective Weld Properties
(all dimensions are for the overlapping branch, \(i\))

when 25% ≤ \(O_v\) < 50% :

\[
l_v, \text{overlapping branch} = \frac{2O_v}{50} \left[1 - \frac{O_v}{100} \left(\frac{H_{bi}}{\sin \theta_i} \right) + \frac{O_v}{100} \left(\frac{H_{bi}}{\sin (\theta_j + \theta_i)} \right) \right] + b_{eov} + b_{cov} \quad (K4-7)
\]

when 50% ≤ \(O_v\) < 80% :

\[
l_v, \text{overlapping branch} = \frac{2}{100} \left[1 - \frac{O_v}{100} \left(\frac{H_{bi}}{\sin \theta_i} \right) + \frac{O_v}{100} \left(\frac{H_{bi}}{\sin (\theta_j + \theta_i)} \right) \right] + b_{eov} + b_{cov} \quad (K4-8)
\]

when 80% ≤ \(O_v\) ≤ 100% :

\[
l_v, \text{overlapping branch} = 2 \left[1 - \frac{O_v}{100} \left(\frac{H_{bi}}{\sin \theta_i} \right) + \frac{O_v}{100} \left(\frac{H_{bi}}{\sin (\theta_j + \theta_i)} \right) \right] + B_{bi} + b_{cov} \quad (K4-9)
\]

\[
b_{eoi} = \frac{10}{B_i/t_i} \left(\frac{F_{j,t}}{F_{yo,t} + B_i} \right) B_{bi} \leq B_{bi} \quad (K2-20)
\]

\[
b_{cov} = \frac{10}{B_{j,tj}} \left(\frac{F_{yo,tj}}{F_{yo,tj} + B_{bj}} \right) B_{bj} \leq B_{bj} \quad (K2-21)
\]

when \(B_{bi}/B_{bj} > 0.85\) or \(\theta_2 > 50^\circ\), \(b_{eoi}\) shall not exceed \(2t_i\)
and when \(B_{bj}/B_{bj} > 0.85\) or \((180 - \theta_1 - \theta_2) > 50^\circ\), \(b_{cov}\) shall not exceed \(2t_{bj}\).

Subscript \(i\) refers to the overlapping branch
Subscript \(j\) refers to the overlapped branch

Overlapped Member Effective Weld Properties
(all dimensions are for the overlapped branch, \(j\))

\[
l_v = \frac{2H_{bj}}{\sin \theta} + 2b_{eoj} \quad (K4-10)
\]
When $\theta > D$ or $\theta > 50^\circ$, β_{eq} shall not exceed $2t$.

User Note: The weld checks in Table K4.1 may be omitted if the welds are capable of developing the full strength of the branch member wall along its entire perimeter (or a plate along its entire length).

The approach used here to allow down-sizing of welds assumes a constant weld size around the full perimeter of the HSS branch, including all “non-effective” areas, except when the “hidden” weld under an overlapping branch is allowed to be omitted (discussed below). Special attention is required for equal width (or near-equal width) connections which combine partial penetration groove welds, along the matched edges of the connection, with fillet welds generally across the main member face.

A special case exists for branches with axial loads in overlapped K-connections. When this connection has been designed in accordance with Table K2.2 of this chapter, and the branch member component forces normal to the chord are 80% “balanced” (i.e. the branch member forces normal to the chord face differ by no more than 20%); the “hidden” weld under an overlapping branch may be omitted if:

a. the remaining welds to the overlapped branch everywhere develop the full capacity of the overlapped branch member members walls, or

b. the remaining welds to the overlapped branch are designed with a weld effective length of $l_e = 2H_b/\sin(\theta)$ (i.e. β_{eq} in K4-10 is taken as zero).
CHAPTER L

DESIGN FOR SERVICEABILITY

This chapter addresses serviceability design requirements. The chapter is organized as follows:

L2. Camber
L3. Deflections
L4. Drift
L5. Vibration
L6. Wind-Induced Motion
L7. Expansion and Contraction
L8. Connection Slip

L1. GENERAL PROVISIONS

Serviceability is a state in which the function of a building, its appearance, maintainability, durability, and comfort of its occupants are preserved under normal usage. Limiting values of structural behavior for serviceability (such as maximum deflections and accelerations) shall be chosen with due regard to the intended function of the structure. Serviceability shall be evaluated using appropriate load combinations for the serviceability limit states identified.

User Note: Serviceability limit states, service loads and appropriate load combinations for serviceability requirements can be found in ASCE 7, Appendix C and Commentary to Appendix C. The performance requirements for serviceability in this chapter are consistent with those requirements. Service loads, as stipulated herein, are those that act on the structure at an arbitrary point in time and are not usually taken as the nominal loads.

L2. CAMBER

Where camber is used to achieve proper position and location of the structure, the magnitude, direction, and location of camber shall be specified in the structural drawings.

L3. DEFLECTIONS

Deflections in structural members and structural systems under appropriate service load combinations shall not impair the serviceability of the structure.
User Note: Conditions to be considered include levelness of floors, alignment of structural members, integrity of building finishes and other factors that affect the normal usage and function of the structure. For composite members, the additional deflections due to the shrinkage and creep of the concrete should be considered.

L4. DRIFT

Drift of a structure shall be evaluated under service loads to provide for serviceability of the structure, including the integrity of interior partitions and exterior cladding. Drift under strength load combinations shall not cause collision with adjacent structures or exceed the limiting values of such drifts that may be specified by the applicable building code.

L5. VIBRATION

The effect of vibration on the comfort of the occupants and the function of the structure shall be considered. The sources of vibration to be considered include pedestrian loading, vibrating machinery and others identified for the structure.

L6. WIND-INDUCED MOTION

The effect of wind-induced motion of buildings on the comfort of occupants shall be considered.

L7. EXPANSION AND CONTRACTION

The effects of thermal expansion and contraction of a building shall be considered. Damage to building cladding can cause water penetration and may lead to corrosion.

L8. CONNECTION SLIP

The effects of connection slip shall be included in the design where slip at bolted connections may cause deformations that impair the serviceability of the structure. Where appropriate, the connection shall be designed to preclude slip.

User Note: For the design of slip-critical connections, see Sections J3.8 and J3.9. For more information on connection slip, refer to the RCSC Specification for Structural Joints Using ASTM A325 or A490 Bolts.
CHAPTER M
FABRICATION, ERECTION AND QUALITY CONTROL

This chapter addresses requirements for shop drawings, fabrication, shop painting, erection and quality control.

The chapter is organized as follows:

M1. Shop and Erection Drawings
M2. Fabrication
M3. Shop Painting
M4. Erection

M1. SHOP AND ERECTION DRAWINGS

Shop and erection drawings are permitted to be prepared in stages. Shop drawings shall be prepared in advance of fabrication and give complete information necessary for the fabrication of the component parts of the structure, including the location, type and size of welds and bolts. Erection drawings shall be prepared in advance of erection and give information necessary for erection of the structure. Shop and erection drawings shall clearly distinguish between shop and field welds and bolts and shall clearly identify pretensioned and slip-critical high-strength bolted connections. Shop and erection drawings shall be made with due regard to speed and economy in fabrication and erection.

M2. FABRICATION

1. Cambering, Curving and Straightening

Local application of heat or mechanical means is permitted to be used to introduce or correct camber, curvature and straightness. The temperature of heated areas, as measured by approved methods, shall not exceed 1,100 °F (593 °C) for A514/A514M and A852/A852M steel nor 1,200 °F (649 °C) for other steels.

2. Thermal Cutting

Thermally cut edges shall meet the requirements of AWS D1.1, Sections 5.15.1.2, 5.15.4.3 and 5.15.4.4 with the exception that thermally cut free edges that will not be subject to fatigue shall be free of round-bottom gouges greater than \(\frac{1}{32} \) in. (5 mm) deep and sharp V-shaped notches. Gouges deeper than \(\frac{1}{32} \) in. (5 mm) and notches shall be removed by grinding or repaired by welding.
Reentrant corners shall be formed with a curved transition. The radius need not exceed that required to fit the connection. The surface resulting from two straight torch cuts meeting at a point is not considered to be curved. Discontinuous corners are permitted where the material on both sides of the discontinuous reentrant corner are connected to a mating piece to prevent deformation and associated stress concentration at the corner.

User Note: Reentrant corners with a radius of 1/2 to 3/8 in. (13 to 10 mm) are acceptable for statically loaded work. Where pieces need to fit tightly together, a discontinuous reentrant corner is acceptable if the pieces are connected close to the corner on both sides of the discontinuous corner. Slots in HSS for gussets may be made with semicircular ends, or with curved corners. Square ends are acceptable provided the edge of the gusset is welded to the HSS.

Beam copes and weld access holes shall meet the geometrical requirements of Section J1.6. Beam copes and weld access holes in shapes that are to be galvanized shall be ground to bright metal. For shapes with a flange thickness not exceeding 2 in. (50 mm) the roughness of thermally cut surfaces of copes shall be no greater than a surface roughness value of 2,000 μin. (50 μm) as defined in ASME B46.1. For beam copes and weld access holes in which the curved part of the access hole is thermally cut in ASTM A6/A6M hot-rolled shapes with a flange thickness exceeding 2 in. (50 mm) and welded built-up shapes with material thickness greater than 2 in. (50 mm), a preheat temperature of not less than 150 °F (66 °C) shall be applied prior to thermal cutting. The thermally cut surface of access holes in ASTM A6/A6M hot-rolled shapes with a flange thickness exceeding 2 in. (50 mm) and built-up shapes with a material thickness greater than 2 in. (50 mm) shall be ground and inspected for cracks using magnetic particle inspection in accordance with ASTM E709 or liquid penetrant in accordance with ASTM E165. Any crack is unacceptable regardless of size or location.

User Note: The AWS Surface Roughness Guide for Oxygen Cutting (AWS C4.1-77) sample 2 may be used as a guide for evaluating the surface roughness of copes in shapes with flanges not exceeding 2 in.

3. **Planing of Edges**

Planing or finishing of sheared or thermally cut edges of plates or shapes is not required unless specifically called for in the contract documents or included in a stipulated edge preparation for welding.

4. **Welded Construction**

The technique of welding, the workmanship, appearance and quality of welds, and the methods used in correcting nonconforming work shall
be in accordance with AWS D1.1 except as modified in Section J2.

5. **Bolted Construction**

Parts of bolted members shall be pinned or bolted and rigidly held together during assembly. Use of a drift pin in bolt holes during assembly shall not distort the metal or enlarge the holes. Poor matching of holes shall be cause for rejection.

Bolt holes shall comply with the provisions of the RCSC Specification for Structural Joints Using ASTM A325 or A490 Bolts, hereafter referred to as the RCSC Specification, Section 3.3 except that thermally cut holes are permitted with a surface roughness profile not exceeding 1,000 μin. (25 μm) as defined in ASME B46.1. Gouges shall not exceed a depth of 1/16 in. (2 mm). Water jet cut holes are also permitted.

Fully inserted finger shims, with a total thickness of not more than ¼ in. (6 mm) within a joint, are permitted in joints without changing the strength (based upon hole type) for the design of connections. The orientation of such shims is independent of the direction of application of the load.

The use of high-strength bolts shall conform to the requirements of the RCSC Specification, except as modified in Section J3.

6. **Compression Joints**

Compression joints that depend on contact bearing as part of the splice strength shall have the bearing surfaces of individual fabricated pieces prepared by milling, sawing or other suitable means.

7. **Dimensional Tolerances**

Dimensional tolerances shall be in accordance with Chapter 6 of the AISC Code of Standard Practice for Steel Buildings and Bridges, hereafter referred to as the AISC Code of Standard Practice.

8. **Finish of Column Bases**

Column bases and base plates shall be finished in accordance with the following requirements:

(1) Steel bearing plates 2 in. (50 mm) or less in thickness are permitted without milling provided a satisfactory contact bearing is obtained. Steel bearing plates over 2 in. (50 mm) but not over 4 in. (100 mm) in thickness are permitted to be straightened by pressing or, if presses are not available, by milling for bearing surfaces (except as noted in subparagraphs 2 and 3 of this section), to obtain a satisfactory contact bearing. Steel bearing plates over 4...
in. (100 mm) in thickness shall be milled for bearing surfaces (except as noted in subparagraphs 2 and 3 of this section).

(2) Bottom surfaces of bearing plates and column bases that are grouted to ensure full bearing contact on foundations need not be milled.

(3) Top surfaces of bearing plates need not be milled when complete-joint-penetration groove welds are provided between the column and the bearing plate.

9. Holes for Anchor Rods

Holes for anchor rods are permitted to be thermally cut in accordance with the provisions of Section M2.2.

10. Drain Holes

When water can collect inside HSS or box members, either during construction or during service, the member shall be sealed, provided with a drain hole at the base or protected by other suitable means.

11. Requirements for Galvanized Members

Members and parts to be galvanized shall be designed, detailed and fabricated to provide for flow and drainage of pickling fluids and zinc and to prevent pressure buildup in enclosed parts.

User Note: See *The Design of Products to be Hot-Dip Galvanized After Fabrication*, American Galvanizer’s Association, and ASTM A123, A153, A384 and A780 for useful information on design and detailing of galvanized members. See Section M2.2 for requirements for copes of members to be galvanized.

M3. SHOP PAINTING

1. General Requirements

Shop painting and surface preparation shall be in accordance with the provisions in Chapter 6 of the AISC Code of Standard Practice.

Shop paint is not required unless specified by the contract documents.

2. Inaccessible Surfaces

Except for contact surfaces, surfaces inaccessible after shop assembly shall be cleaned and painted prior to assembly, if required by the contract documents.
3. Contact Surfaces

Paint is permitted in bearing-type connections. For slip-critical connections, the faying surface requirements shall be in accordance with the RCSC Specification, Section 3.2.2(b).

4. Finished Surfaces

Machine-finished surfaces shall be protected against corrosion by a rust inhibitive coating that can be removed prior to erection, or which has characteristics that make removal prior to erection unnecessary.

5. Surfaces Adjacent to Field Welds

Unless otherwise specified in the design documents, surfaces within 2 in. (50 mm) of any field weld location shall be free of materials that would prevent proper welding or produce objectionable fumes during welding.

M4. ERECTION

1. Alignment of Column Bases

Column bases shall be set level and to correct elevation with full bearing on concrete or masonry as defined in Chapter 7 of the AISC Code of Standard Practice.

2. Stability and Connections

The frame of steel skeleton buildings shall be carried up true and plumb within the limits defined in Chapter 7 of the AISC Code of Standard Practice. As erection progresses, the structure shall be secured to support dead, erection and other loads anticipated to occur during the period of erection. Temporary bracing shall be provided, in accordance with the requirements of the AISC Code of Standard Practice, wherever necessary to support the loads to which the structure may be subjected, including equipment and the operation of same. Such bracing shall be left in place as long as required for safety.

3. Alignment

No permanent bolting or welding shall be performed until the adjacent affected portions of the structure have been properly aligned.

4. Fit of Column Compression Joints and Base Plates

Lack of contact bearing not exceeding a gap of 1/16 in. (2 mm), regardless of the type of splice used (partial-joint-penetration groove welded or bolted), is permitted. If the gap exceeds 1/16 in. (2 mm), but is equal to or less than ¼ in. (6 mm), and if an engineering investiga-
tion shows that sufficient contact area does not exist, the gap shall be packed out with nontapered steel shims. Shims need not be other than mild steel, regardless of the grade of the main material.

5. **Field Welding**

Surfaces in and adjacent to joints to be field welded shall be prepared as necessary to assure weld quality. This preparation shall include surface preparation necessary to correct for damage or contamination occurring subsequent to fabrication.

6. **Field Painting**

Responsibility for touch-up painting, cleaning and field painting shall be allocated in accordance with accepted local practices, and this allocation shall be set forth explicitly in the contract documents.
CHAPTER N

QUALITY CONTROL AND QUALITY ASSURANCE

This chapter addresses requirements for quality control, quality assurance and nondestructive testing for structural steel systems and steel elements of composite members for buildings and other structures.

User Note: This chapter does not address quality control or quality assurance for reinforcing steel, concrete materials or placement of concrete for composite members. This chapter does not address quality control or quality assurance for surface preparation or coatings.

The Chapter is organized as follows:

N1. Scope
N2. Fabricator’s and Erector’s Quality Control Program
N3. Fabricator’s and Erector’s Documents
N4. Inspection and Nondestructive Testing Personnel
N5. Minimum Requirements for Inspection of Structural Steel Buildings
N6. Minimum Requirements for Inspection of Composite Construction
N7. Approved Fabricators and Erectors
N8. Nonconforming Materials and Workmanship

N1. SCOPE

Quality Control (QC) shall be provided by the fabricator and erector as specified in this chapter. Quality Assurance (QA) shall be provided by others when required by the authority having jurisdiction (AHJ), applicable building code (ABC), purchaser, owner or engineer of record (EOR). Nondestructive Testing (NDT) shall be performed by the agency or firm responsible for Quality Assurance, except as permitted in accordance with Section N7.

N2. FABRICATOR’S AND ERECTOR’S QUALITY CONTROL PROGRAM

The fabricator and erector shall establish and maintain quality control procedures and perform inspections to ensure that the work is performed in accordance with this Specification and the construction documents.

Material identification procedures shall comply with the requirements of the AISC Code of Standard Practice Section 6.1, and shall be monitored by the fabricator’s Quality Control Inspector (QCI).

The fabricator’s QCI shall inspect the following as a minimum:

1. Welding, high-strength bolting, and details in accordance with Section N5
2. Cut and finished surfaces, in accordance with Section M2
3. Heating for straightening, cambering and curving, in accordance with Section M2.1
4. Tolerances for fabrication, in accordance with Section 6 of the AISC Code of Standard Practice

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
The erector’s QCI shall inspect the following as a minimum:

(1) Welding, high-strength bolting, and details in accordance with Section N5
(2) Steel deck and shear connector placement and attachment in accordance with Section N6, if a part of the erector’s work
(3) Field cut surfaces, in accordance with Section M2.2
(4) Heating for straightening, in accordance with Section M2.1
(5) Tolerances for erection, in accordance with Section 7 of the AISC Code of Standard Practice.

The fabricator and erector shall maintain records of the inspections performed.

N3. FABRICATOR’S AND ERECTOR’S DOCUMENTS

1. Submittals for Steel Construction

The fabricator or erector shall submit the following documents for review by the engineer of record (EOR) or designee, prior to fabrication or erection, as applicable:

(1) Shop drawings, unless shop drawings have been furnished by others
(2) Erection drawings, unless erection drawings have been furnished by others

2. Available Documents for Steel Construction

The following documents shall be available for review by the EOR or designee prior to fabrication or erection, as applicable, unless otherwise required in the contract documents to be submitted:

(1) For main structural steel elements, copies of material test reports in accordance with Section A3.1
(2) For fasteners, copies of manufacturer’s certifications in accordance with Section A3.3
(3) For consumables for welding, copies of manufacturer’s certifications in accordance with Section A3.5
(4) For headed stud anchors, copies of manufacturer’s certifications in accordance with Section A3.6
(5) Manufacturer’s product data sheets or catalog data for welding filler metals and fluxes to be used. The data sheets shall describe the product, limitations of use, recommended or typical welding parameters, and storage and exposure requirements, including baking, if applicable.
(6) Welding procedure specifications (WPSs)
(7) Procedure qualification records (PQRs) for WPSs that are not prequalified in accordance with AWS D1.1 or AWS D1.3, as applicable
(8) Welder performance qualification records (WPQR) and continuity records
(9) Fabricator’s or erector’s, as applicable, written quality control manual, that shall include, as a minimum:
 (i) Material control procedures
 (ii) QC Inspector qualifications
 (iii) Inspection procedures
 (iv) Nonconformance procedures
N4. INSPECTION AND NONDESTRUCTIVE TESTING PERSONNEL

1. Quality Control Inspector Qualifications

Quality control (QC) welding inspection personnel shall be qualified to the satisfaction of the fabricator’s or erector’s QC program, as applicable, and in accordance with either of the following:

(a) Associate welding inspectors (AWI) or higher as defined in AWS B5.1, Standard for the Qualification of Welding Inspectors, or

(b) Qualified under the provisions of AWS D1.1/D1.1M subclause 6.1.4

QC bolting inspection shall be conducted by qualified personnel. The basis for qualification shall be documented training and experience in structural bolting inspection.

2. Quality Assurance Inspector Qualifications

Quality Assurance (QA) welding inspectors shall be qualified to the satisfaction of the QA agency’s written practice, and in accordance with either of the following:

(a) Welding Inspectors (WIs), or Senior Welding Inspectors (SWIs), as defined in AWS B5.1, Standard for the Qualification of Welding Inspectors, except Associate Welding Inspectors (AWIs) are permitted to be used under the direct supervision of WIs, who are on site and available when weld inspection is being conducted, or

(b) Qualified under the provisions of AWS D1.1/D1.1M subclause 6.1.4

QA bolting inspection shall be conducted by qualified personnel. The basis for qualification shall be documented training and experience in structural bolting inspection.

3. NDT Personnel Qualifications

Nondestructive testing personnel shall be qualified in accordance with their employer’s written practice, which shall meet or exceed the criteria of the American Society for Nondestructive Testing (ASNT) SNT-TC-1A, Recommended Practice for the Qualification and Certification of Nondestructive Testing Personnel, or ASNT CP-189, Standard for the Qualification and Certification of Nondestructive Testing Personnel, and AWS D1.1 Structural Welding Code – Steel clause 6.14.6.

N5. MINIMUM REQUIREMENTS FOR INSPECTION OF STRUCTURAL STEEL BUILDINGS

1. Inspection Functions

Inspections shall be performed as continuous inspection, unless otherwise identified as permitted to be performed as periodic inspection.

2. Quality Control
Inspection tasks shall be continuously performed by the person performing the fabrication or erection.

QC inspection tasks shall be performed as continuous inspection or periodic inspection, as designated, by the fabricator’s or erector’s Quality Control Inspector (QCI), as applicable, in accordance with Sections N5.5, N5.7 and N5.8.

Tasks in Tables N5.5-1 through N5.5-3 and Tables N5.7-1 through N5.7-3 listed for QC are those inspections performed by the QCI to ensure that the work is performed in accordance with the construction documents.

For QC inspection, the applicable construction documents are the shop drawings and the erection drawings. The QCI need not refer to the design drawings and specifications.

3. Quality Assurance

As much as practicable, Quality Assurance (QA) inspection of fabricated items shall be made at the fabricator’s plant. The Quality Assurance Inspector (QAI) shall schedule this work to minimize interruption to the work of the fabricator.

QA inspection of the erected steel system shall be made at the project site. The QAI shall schedule this work to minimize interruption to the work of the erector.

QA inspection tasks shall be periodically or continuously performed, as designated, by the QAI, in accordance with Sections N5.5, N5.7 and N5.8.

Tasks in Tables N5.5-1 through N5.5-3 and N5.7-1 through N5.7-3 listed for QA are those inspections performed by the QAI to ensure that the work is performed in accordance with the construction documents.

Concurrent with the submittal of such reports to the AHJ, EOR or owner, the QA agency shall submit to the fabricator and erector:

(1) Inspection reports
(2) Nondestructive testing reports

4. Coordinated Inspection

Where a task is noted to be performed by both QC and QA, it is permitted to coordinate the inspection function between the QCI and QAI so that the inspection functions are performed by only one party. Where QA is to rely upon inspection functions performed by QC, the approval of the engineer of record and the authority having jurisdiction is required.

5. Inspection of Welding

Observation of welding operations and visual inspection of in-process and completed welds shall be the primary method to confirm that the materials, procedures, and workmanship are in conformance with the construction documents. For structural steel, all provisions of AWS D1.1/D1.1M Structural Welding Code – Steel for statically loaded...
structures shall apply, except those items listed in Section J2 of this Specification.

Welding inspection shall be continuous inspection, except that periodic inspection is permitted for the following items, provided the welding consumables, welding procedure specifications and qualifications of welding personnel are verified prior to the start of the work, observations are made of the work in progress, and a visual inspection of all completed welds is made:

1. Single pass fillet welds
2. Welded studs when used for composite construction, in accordance with Section N6
3. Welding of stairs and railing systems and other steel, iron and metal items, as defined in Section 2.2 of the AISC Code of Standard Practice, made from standard structural shapes or hot-rolled steel plate.

User Note: The inspection of steel (open-web) joists and joist girders, tanks, pressure vessels, cables, cold-formed steel products, gage metal products is addressed in other standards.

As a minimum, welding inspection tasks shall be in accordance with Tables N5.5-1, N5.5-2 and N5.5-3. In these tables, the inspection tasks are as follows:

O – Observe these items on a random basis. Operations need not be delayed pending these inspections.

P – Perform these tasks prior to final acceptance of the item.
TABLE N5.5-1

Inspection Tasks Prior to Welding

<table>
<thead>
<tr>
<th>Inspection Tasks Prior to Welding</th>
<th>QC</th>
<th>QA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welding procedure specifications (WPSs) available</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Manufacturer certifications for welding consumables available</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Material identification (type/grade)</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Welder identification system¹</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Fit-up of groove welds (including joint geometry)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Joint preparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Dimensions (alignment, root opening, root face, bevel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Cleanliness (condition of steel surfaces)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tacking (tack weld quality and location)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Backing type and fit (if applicable)</td>
<td>P/O²</td>
<td>O</td>
</tr>
<tr>
<td>Configuration and finish of access holes</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Fit-up of fillet welds</td>
<td>P/O²</td>
<td>O</td>
</tr>
</tbody>
</table>

1. The fabricator or erector, as applicable, shall maintain a system by which a welder who has welded a joint or member can be identified. Stamps, if used, shall be the low-stress type.
2. Following performance of this inspection task for ten welds to be made by a given welder, with the welder demonstrating adequate understanding of requirements and possession of skills and tools to verify these items, the Perform designation of this task shall be reduced to Observe, and the welder shall perform this task. Should the inspector determine that the welder has discontinued adequate performance of this task, the task shall be returned to Perform until such time as the Inspector has reestablished adequate assurance that the welder will perform the inspection tasks listed.
TABLE N5.5-2

Inspection Tasks during Welding

<table>
<thead>
<tr>
<th>Inspection Tasks During Welding</th>
<th>QC</th>
<th>QA</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPS followed</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>- Settings on welding equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Travel speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Selected welding materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Shielding gas type/flow rate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Preheat applied</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Interpass temperature maintained (min/max.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Proper position (F, V, H, OH)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use of qualified welders</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Control and handling of welding consumables</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>- Packaging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Exposure control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental conditions</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>- Wind speed within limits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Precipitation and temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welding techniques</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>- Interpass and final cleaning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Each pass within profile limitations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Each pass meets quality requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No welding over cracked tack welds</td>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

TABLE N5.5-3

Inspection Tasks after Welding

<table>
<thead>
<tr>
<th>Inspection Tasks After Welding</th>
<th>QC</th>
<th>QA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welds cleaned</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Size length, and location of welds</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Welds meet visual acceptance criteria</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>- Crack prohibition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Weld/base-metal fusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Crater cross-section</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Weld profiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Weld size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Undercut</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Porosity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backing removed and weld tabs removed (if required)</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Repair activities</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Document acceptance or rejection of welded joint, member or structure, as applicable</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>
6. Nondestructive Testing of Welded Joints

6a. Procedures

Ultrasonic testing (UT), magnetic particle testing (MT), and penetrant testing (PT), where required, shall be performed by QA in accordance with AWS D1.1. Acceptance criteria shall be AWS D1.1 for statically loaded structures, unless otherwise designated by the EOR.

6b. k-Area NDT

When welding of doubler plates, continuity plates, or stiffeners has been performed in the k-area, the web k-area within 3 in. (75 mm) of the weld shall be tested for cracks using MT.

6c. CJP Groove Weld NDT

For structures in Occupancy Category III or IV of Table 1-1, Occupancy Category of Buildings and Other Structures for Flood, Wind, Snow, Earthquake, and Ice Loads, of SEI/ASCE 7, Minimum Design Loads for Buildings and Other Structures, UT shall be performed on all CJP groove welds subject to transversely applied tension loading in butt, T- and corner joints, in materials 5/16 in. (8 mm) thick or greater. For structures in Occupancy Category II, UT shall be performed on 10% of CJP groove welds in butt, T- and corner joints subject to transversely applied tension loading, in materials 5/16 in. (8 mm) thick or greater.

User Note: For structures in Occupancy Category I, NDT of CJP groove welds is not required. For all structures in all Occupancy Categories, NDT of CJP groove welds in materials less than 5/16 in. (8 mm) thick is not required.

6d. Access Hole NDT

At welded splices and connections, thermally cut surfaces of access holes shall be tested using MT or PT, when the flange thickness exceeds 2 in. (50 mm) for rolled shapes, or when the web thickness exceeds 2 in. (50 mm) for built-up shapes. Any crack shall be deemed unacceptable regardless of size or location.

User Note: See Section M2.2.

6e. Welded Joints Subjected to Fatigue

When required by Appendix 3, Table A-3.1, welded joints requiring weld soundness to be established by radiographic or ultrasonic inspection shall be tested as prescribed. Reduction in the rate of UT is prohibited.

6f. Reduction of Rate of Ultrasonic Testing

The rate of UT is permitted to be reduced if approved by the EOR and the AHJ. Where the initial rate for UT is 100%, the NDT rate for an individual welder or welding operator is permitted to be reduced to 25%, provided the reject rate, the number of welds contain-
The reject rate, the number of welds containing unacceptable defects divided by the number of welds completed, is demonstrated to be 5% or less of the welds tested for the welder or welding operator. A sampling of at least 40 completed welds for a job shall be made for such reduction evaluation. For evaluating the reject rate of continuous welds over 3 ft (1 m) in length where the effective throat is 1 in. (25 mm) or less, each 12 in. (300 mm) increment or fraction thereof shall be considered as one weld. For evaluating the reject rate on continuous welds over 3 ft (1 m) in length where the effective throat is greater than 1 in. (25 mm), each 6 in. (150 mm) of length or fraction thereof shall be considered one weld.

6g. Increase in Rate of Ultrasonic Testing

For structures in Occupancy Category II, where the initial rate for UT is 10 percent, the NDT rate for an individual welder or welding operator shall be increased to 100 percent should the reject rate, the number of welds containing unacceptable defects divided by the number of welds completed, exceeds 5 percent of the welds tested for the welder or welding operator. A sampling of at least 20 completed welds for a job shall be made prior to implementing such an increase. When the reject rate for the welder or welding operator, after a sampling of at least 40 completed welds, has fallen to 5 percent or less, the rate of UT shall be returned to 10%. For evaluating the reject rate of continuous welds over 3 ft (1 m) in length where the effective throat is 1 in. (25 mm) or less, each 12 in. (300 mm) increment or fraction thereof shall be considered as one weld. For evaluating the reject rate on continuous welds over 3 ft (1 m) in length where the effective throat is greater than 1 in. (25 mm), each 6 in. (150 mm) of length or fraction thereof shall be considered one weld.

6h. Documentation

All NDT performed shall be documented. For shop fabrication, the NDT report shall identify the tested weld by piece mark and location in the piece. For field work, the NDT report shall identify the tested weld by location in the structure, piece mark, and location in the piece.

When a weld is rejected on the basis of NDT, the NDT record shall indicate the location of the defect and the basis of rejection.

7. Inspection of High-Strength Bolting

Observation of bolting operations shall be the primary method used to confirm that the materials, procedures and workmanship incorporated in construction are in conformance with the construction documents. Inspection tasks prior to bolting in accordance with Table N5.7-1 shall be performed as periodic inspection.

(1) For snug tight joints, inspection shall be performed as periodic inspection. For such joints, pre-installation verification testing as specified in Table N5.7-1 and monitoring of the installation procedures as specified in Table N5.7-2 are not applicable.

(2) For pretensioned joints and slip-critical joints, when the installer is using the turn-of-nut method with matchmarking techniques, the direct-tension-indicator method, or the twist-off-type tension control bolt method, monitoring of bolt pretension-
ing procedures as specified in Table N5.7-2 shall be performed as periodic in-

inspection.

(3) For pretensioned joints and slip-critical joints, when the installer is using the cali-

brated wrench method or the turn-of-nut method without matchmarking, monitor-

ing of bolt pretensioning procedures as specified in Table N5.7-2 shall be per-

formed as continuous inspection.

As a minimum, bolting inspection tasks shall be in accordance with Tables N5.7-1, N5.7-

2 and N5.7-3. In these tables, the inspection tasks are as follows:

O – Observe these items on a random basis. Operations need not be delayed pending

these inspections.

P – Perform these tasks prior to final acceptance of the item.
TABLE N5.7-1

Inspection Tasks Prior to Bolting

<table>
<thead>
<tr>
<th>QC</th>
<th>QA</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>P</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>P</td>
<td>O</td>
</tr>
<tr>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

TABLE N5.7-2

Inspection Tasks during Bolting

<table>
<thead>
<tr>
<th>QC</th>
<th>QA</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>O</td>
</tr>
</tbody>
</table>

Table N5.7-3

Inspection Tasks after Bolting

<table>
<thead>
<tr>
<th>QC</th>
<th>QA</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

American Institute of Steel Construction*
8. Other Inspection Tasks

The fabricator’s QCI shall perform periodic inspection of the fabricated steel to verify compliance with the details shown on the construction documents, such as proper application of joint details at each connection. The erector’s QCI shall perform periodic inspection of the erected steel frame to verify compliance with the details shown on the construction documents, such as bracing, stiffeners, member locations and proper application of joint details at each connection.

The QAI shall perform periodic inspection of the fabricated steel or erected steel frame, as appropriate, to verify compliance with the details shown on the construction documents, such as bracing, stiffeners, member locations and proper application of joint details at each connection.

The QAI shall perform continuous inspection during the placement of anchor rods and other embedments supporting structural steel for conformance with the construction documents. As a minimum, the diameter, grade, type and length of the anchor rod or embedded item, and the extent or depth of embedment into the concrete, shall be verified prior to placement to concrete.

N6. MINIMUM REQUIREMENTS FOR INSPECTION OF COMPOSITE CONSTRUCTION

Inspection of structural steel and steel deck used in composite construction shall comply with the requirements this Chapter.

For welding of steel deck, observation of welding operations and visual inspection of in-process and completed welds shall be the primary method to confirm that the materials, procedures, and workmanship are in conformance with the construction documents. All provisions of AWS D1.1/D1.3M Structural Welding Code – Sheet Steel shall apply. Deck welding inspection shall be periodic inspection provided the welding consumables, welding procedure specifications and qualifications of welding personnel are verified prior to the start of the work, observations are made of the work in progress, and a visual inspection of all completed welds is made.

For those items for Quality Control (QC) in Table N6-1 that contain an Observe designation, the QC inspection shall be performed by the erector’s Quality Control Inspector (QCI). In Table N6-1, the inspection tasks are as follows:

O – Observe these items on a random basis. Operations need not be delayed pending these inspections.

P – Perform these tasks prior to final acceptance of the item.
TABLE N6-1

<table>
<thead>
<tr>
<th>Inspection of Composite Construction Prior to Concrete Placement</th>
<th>QC</th>
<th>QA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placement and installation of steel deck</td>
<td>P</td>
<td>P</td>
</tr>
<tr>
<td>Placement and installation of stud shear connectors</td>
<td>P</td>
<td>P</td>
</tr>
</tbody>
</table>

7. APPROVED FABRICATORS AND ERECTORS

Quality Assurance (QA) inspections, except nondestructive testing (NDT), may be waived when the work is performed in a fabricating shop or by an erector approved by the authority having jurisdiction (AHJ) to perform the work without QA. NDT of welds completed in an approved fabricator’s shop may be performed by that fabricator when approved by the AHJ. When the fabricator performs the NDT, the QA agency shall review the fabricator’s NDT reports.

At completion of fabrication, the approved fabricator shall submit a certificate of compliance to the AHJ stating that the materials supplied and work performed by the fabricator are in accordance with the construction documents. At completion of erection, the approved erector shall submit a certificate of compliance to the AHJ stating that the materials supplied and work performed by the erector are in accordance with the construction documents.

8. NONCONFORMING MATERIAL AND WORKMANSHIP

Identification and rejection of material or workmanship that is not in conformance with the *construction documents* shall be permitted at any time during the progress of the work. Nonconforming material and workmanship shall be brought to the immediate attention of the fabricator or erector, as applicable.

Nonconforming material or workmanship shall be brought into conformance, or made suitable for its intended purpose as determined by the *engineer of record*.

Concurrent with the submittal of such reports to the AHJ, EOR or owner, the QA agency shall submit to the fabricator and erector:

1. Nonconformity reports
2. Reports of repair, replacement, or acceptance of nonconforming items
APPENDIX 1

DESIGN BY INELASTIC ANALYSIS

This appendix addresses design by inelastic analysis, in which consideration of the redistribution of member and connection forces and moments as a result of localized yielding is permitted.

The appendix is organized as follows:

1.1. General Requirements
1.2. Ductility Requirements
1.3. Analysis Requirements

1.1. GENERAL REQUIREMENTS

Design by inelastic analysis shall be conducted in accordance with Section B3.3, Load and Resistance Factor Design (LRFD). The design strength of the structural system and its members and connections shall equal or exceed the required strength as determined by the inelastic analysis. The provisions of this Appendix do not apply to seismic design.

The inelastic analysis shall take into account: (1) flexural, shear, and axial member deformations, and all other component and connection deformations that contribute to the displacements of the structure; (2) second-order effects (including P-Δ and P-δ effects); (3) geometric imperfections; (4) stiffness reductions due to inelasticity, including the effect of residual stresses and partial yielding of the cross section; and (5) uncertainty in system, member, and connection strength and stiffness.

Strength limit states detected by an inelastic analysis that incorporates all of the above requirements are not subject to the corresponding provisions of the Specification when a comparable or higher level of reliability is provided by the analysis. It must be demonstrated that the capabilities of the inelastic analysis are adequate for waiving Specification provisions. In all cases, the plastic strength of the member cross section, calculated using the specified minimum yield stress, shall not be exceeded. Connections shall meet the requirements of Section B3.6. Connections at locations undergoing significant plastic deformation (flexural or axial) shall be designed based on a required strength equal to the strength of the yielding member calculated using the expected yield strength. Strength limit states not detected by the inelastic analysis shall be checked using the relevant provisions of Chapters D, E, F, G, H, I, J and K, considering the expected yield strength of the yielding elements.
Furthermore, members and connections subjected to inelastic deformations shall be shown to have adequate ductility consistent with the intended behavior of the structural system. Force redistribution due to rupture of a member or connection is not permitted.

Any method that uses inelastic analysis to proportion members and connections to satisfy these general requirements is permitted. A design method based on inelastic analysis that meets the above strength requirements, the ductility requirements of Section 1.2 and the analysis requirements of Section 1.3 satisfies these general requirements.

1.2. DUCTILITY REQUIREMENTS

Members and connections with elements yielding shall be proportioned such that all inelastic deformation demands are less than or equal to their inelastic deformation capacities. In lieu of explicitly ensuring that the inelastic deformation demands are less than or equal to their inelastic deformation capacities, the following requirements shall be satisfied for members subjected to plastic hinging:

1. Material

The specified minimum yield strength, F_y, of members subject to plastic hinging shall not exceed 65 ksi (450 MPa).

2. Cross-Section

The cross-section of members at plastic hinge locations shall be doubly-symmetric with width-thickness ratios of their compression elements not exceeding λ_{pd}, where λ_{pd} is equal to λ_p from Table B4.1 except as modified below:

(a) For the width-thickness ratio (h/t_w) of webs of I-shaped sections, rectangular HSS, and box-shaped sections subjected to combined flexure and compression

(i) When $P_u/\phi_c P_y \leq 0.125$

\[
\lambda_{pd} = 3.76 \sqrt[5]{\frac{E}{F_y}} \left(1 - \frac{2.75 P_u}{\phi_c P_y}\right)
\]

(A-1-1)

(ii) When $P_u/\phi_c P_y > 0.125$

\[
\lambda_{pd} = 4.12 \sqrt[5]{\frac{E}{F_y}} \left(2.33 - \frac{P_u}{\phi_c P_y}\right) \geq 1.49 \sqrt[5]{\frac{E}{F_y}}
\]

(A-1-2)

where

\[h = \text{as defined in Section B4.1}, \text{ in. (mm)} \]

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

AMERICAN INSTITUTE OF STEEL CONSTRUCTION

2753 $t_w =$ web thickness, in. (mm)
2754 $P_u =$ required axial strength in compression, kips (N)
2755 $P_y =$ member yield strength $F_y A_y$, kips (N)
2756 $\phi_c =$ resistance factor for compression = 0.90
2757
2758 (b) For the width-thickness ratio (b/t) of flanges of rectangular HSS and
2759 box-shaped sections, and for flange cover plates, and diaphragm
2760 plates between lines of fasteners or welds
2761
2762 $\lambda_{pd} = 0.94 \sqrt{E / F_y}$ \hspace{1cm} (A-1-3)
2763 where
2764
2765 $b =$ as defined in Section B4.1, in. (mm)
2766 $t =$ as defined in Section B4.1, in. (mm)
2767
2768 (c) For the diameter-to-thickness ratio (D/t) of circular HSS in flexure
2769
2770 $\lambda_{pd} = 0.045 E / F_y$ \hspace{1cm} (A-1-4)
2771 where
2772
2773 $D =$ outside diameter of circular HSS in. (mm)
2774
3. Unbraced Length
2776
2777 In prismatic member segments that contain plastic hinges, the laterally
2778 unbraced length about the cross-section minor axis shall not exceed
2779 any of the L_{pd} limits determined as follows:
2780
2781 (a) For I-shaped members bent about their major-axis:
2782
2783 $L_{pd} = \left[0.12 - 0.076 \frac{M_1}{M_2} \right] E / r_y$ \hspace{1cm} (A-1-5)
2784 where
2785
2786 $M_2 =$ absolute value of the larger major-axis bending moment
2787 at the end of the unbraced segment, kip-in. (N-mm)
2788
2789 $M_1 = M_2 - 2M_{mid} \leq M_2$
2790
2791 $M_1 \geq M_0$
2792
2793 $M_{mid} =$ major-axis bending moment at the middle of the un-
2794 braced segment, kip-in. (N-mm)
2795
2796 $M_0 =$ smaller major-axis bending moment at the end of the
2797 unbraced segment, kip-in. (N-mm)
2798
2799 M_{mid} and M_0 are positive when member is bent in single
2800 curvature and negative when bent in double curvature.
(b) For solid rectangular bars and for rectangular HSS and box-shaped members bent about their major-axis

\[L_{pd} = \left[0.17 - 0.10 \frac{M}{M_y} \right] \frac{E}{F_y} r_y \geq 0.10 \frac{E}{F_y} r_y \]

(A-1-6)

(c) For all types of members subjected to axial compression

\[L_{pd} = 4.71 r_y \sqrt{\frac{E}{F_y}} \]

(A-1-7)

For member segments subjected to axial compression and containing plastic hinges, the unbraced length about the cross-section major-axis shall not exceed \(4.71 r_y \sqrt{\frac{E}{F_y}}\).

There is no \(L_{pd}\) limit for member segments containing plastic hinges in the following cases:

- Members with circular or square cross sections subjected only to flexure or to combined flexure and tension.
- Members subjected only to flexure about their minor axis or combined tension and flexure about their minor axis.
- Members subjected only to tension.

4. Axial Force

To assure adequate ductility in compression members with plastic hinges, the calculated axial compressive force, \(P_u\), shall be limited to \(0.75F_yA_g\).

1.3. ANALYSIS REQUIREMENTS

The structural analysis shall satisfy the general requirements of Section 1.1. These requirements are permitted to be satisfied by a second-order inelastic analysis that meets the following requirements.

A first-order inelastic analysis or plastic mechanism analysis that neglects the effects of geometric imperfections, partial yielding, and residual stresses is permitted for continuous beams not subjected to axial compression.

User Note: Refer to the Commentary for guidance in conducting a traditional plastic analysis and design in conformance with these provisions.
1. **Material Properties and Yield Criteria**

The specified minimum yield stress F_y and the stiffness of all steel members and connections shall be reduced by a factor of 0.9 for the analysis, except as noted below in Section 1.3.3.

The influence of axial force, major-axis bending moment, and minor-axis bending moment shall be included in the calculation of the inelastic response.

The plastic strength of the member cross section shall be represented in the analysis either by an elastic-perfectly-plastic yield criterion expressed in terms of the axial force, major-axis bending moment, and minor-axis bending moment, or by explicit modeling of the material stress-strain response as elastic-perfectly-plastic.

2. **Geometric Imperfections**

The analysis shall include the effects of initial geometric imperfections. This shall be done by explicitly modeling the imperfections as specified in Section C2.2a or by the application of equivalent notional loads as specified in Section C2.2b.

3. **Residual Stress and Partial Yielding Effects**

The analysis shall include the influence of residual stresses and partial yielding. This shall be done by explicitly modeling these effects in the analysis or by reducing the stiffness of all structural components as specified in Section C2.3.

If the provisions of Section C2.3 are used, then:

(1) The 0.9 stiffness reduction factor specified in Section 1.3 shall be replaced by the reduction of the elastic modulus E by 0.8 as specified in Section C2.3, and

(2) The elastic-perfectly-elastic yield criterion, expressed in terms of the axial force, major-axis bending moment and minor-axis bending moment, shall satisfy the cross-section strength limit defined by Equations H1-1a and H1-1b using $P_c = 0.9P_y$, $M_{cx} = 0.9M_{px}$ and $M_{cy} = 0.9M_{py}$.
APPENDIX 2

DESIGN FOR PONDING

This Appendix provides methods for determining whether a roof system has adequate strength and stiffness to resist ponding.

The appendix is organized as follows:

2.1. Simplified Design for Ponding
2.2. Improved Design for Ponding

2.1. SIMPLIFIED DESIGN FOR PONDING

The roof system shall be considered stable for ponding and no further investigation is needed if both of the following two conditions are met:

\[C_p + 0.9 C_s \leq 0.25 \] \hspace{1cm} (A-2-1)
\[I_d \geq 25(S^4)10^{-6} \] \hspace{1cm} (A-2-2)

where

\[C_p = \frac{32L_p L_p^4}{10^3 I_p} \] \hspace{1cm} (A-2-3)
\[C_s = \frac{32S L^4}{10^3 I_s} \] \hspace{1cm} (A-2-4)

(S.I.: \(I_d \geq 3940S^4 \)) \hspace{1cm} (A-2-2M)

(S.I.: \(C_p = \frac{504L_p L_p^4}{I_p} \)) \hspace{1cm} (A-2-3M)
(S.I.: \(C_s = \frac{504S L^4}{I_s} \)) \hspace{1cm} (A-2-4M)

\(L_p \) = column spacing in direction of girder (length of primary members), ft (m)
\(L_s \) = column spacing perpendicular to direction of girder (length of secondary members), ft (m)
\(S \) = spacing of secondary members, ft (m)
\(I_p \) = moment of inertia of primary members, in.4 (mm4)
\(I_s \) = moment of inertia of secondary members, in.4 (mm4)
\(I_d \) = moment of inertia of the steel deck supported on secondary members, in.4 per ft (mm4 per m)

American Institute of Steel Construction
For trusses and steel joists, the calculation of the moments of inertia I_p and I_s shall include the effects of web member strain when used in the above equation.

User Note: When the moment of inertia is calculated using only the truss or joist chord areas, the reduction in the moment of inertia due to web strain can typically be taken as 15%.

A steel deck shall be considered a secondary member when it is directly supported by the primary members.

2.2. IMPROVED DESIGN FOR PONDING

The provisions given below are to be used when a more accurate evaluation of framing stiffness is needed than that given by Equations A-2-1 and A-2-2.

Define the stress indexes

$$U_p = \left(\frac{0.8F_y - f_o}{f_o} \right)_p$$ \hspace{1cm} \text{for the primary member} \hspace{1cm} (A-2-5)$$

$$U_s = \left(\frac{0.8F_y - f_o}{f_o} \right)_s$$ \hspace{1cm} \text{for the secondary member} \hspace{1cm} (A-2-6)$$

where

$$f_o = \text{stress due to } D + R \ (D = \text{nominal dead load}, R = \text{nominal load due to rainwater or snow exclusive of the ponding contribution}) \ 	ext{ksi (MPa)}$$

For roof framing consisting of primary and secondary members, evaluate the combined stiffness as follows. Enter Figure A-2-1 at the level of the computed stress index U_p determined for the primary beam; move horizontally to the computed C_s value of the secondary beams and then downward to the abscissa scale. The combined stiffness of the primary and secondary framing is sufficient to prevent ponding if the flexibility constant read from this latter scale is more than the value of C_p computed for the given primary member; if not, a stiffer primary or secondary beam, or combination of both, is required.
A similar procedure must be followed using Figure A-2-2.

![Graph](image)

Fig. A-2-1. Limiting flexibility coefficient for the primary systems.

For roof framing consisting of a series of equally-spaced wall bearing beams, evaluate the stiffness as follows. The beams are considered as secondary members supported on an infinitely stiff primary member. For this case, enter Figure A-2-2 with the computed stress index U_s. The limiting value of C_s is determined by the intercept of a horizontal line representing the U_s value and the curve for $C_p = 0$.

User Note: The ponding deflection contributed by a metal deck is usually such a small part of the total ponding deflection of a roof panel that it is sufficient merely to limit its moment of inertia (per foot (meter) of width normal to its span) to 0.000 025 (3.940) times the fourth power of its span length.

Evaluate the stability against ponding of a roof consisting of a metal roof deck of relatively slender depth-span ratio, spanning between beams supported directly on columns, as follows. Use Figure A-2-1 or
A-2-2, using as \(C_s \) the flexibility constant for a one-foot (one-meter) width of the roof deck \((S = 1.0) \).

Fig. A-2-2. Limiting flexibility coefficient for the secondary systems.
APPENDIX 3

DESIGN FOR FATIGUE

This appendix applies to members and connections subject to high cycle loading within the elastic range of stresses of frequency and magnitude sufficient to initiate cracking and progressive failure, which defines the limit state of fatigue.

User Note: See AISC Seismic Provisions for Structural Steel Buildings for structures subject to seismic loads.

The appendix is organized as follows:

3.2. Calculation of Maximum Stresses and Stress Ranges
3.3. Design Stress Range
3.4. Bolts and Threaded Parts
3.5. Special Fabrication and Erection Requirements

3.1. GENERAL PROVISIONS

The provisions of this Appendix apply to stresses calculated on the basis of service loads. The maximum permitted stress due to service loads is 0.66Fy.

Stress range is defined as the magnitude of the change in stress due to the application or removal of the service live load. In the case of a stress reversal, the stress range shall be computed as the numerical sum of maximum repeated tensile and compressive stresses or the numerical sum of maximum shearing stresses of opposite direction at the point of probable crack initiation.

In the case of complete-joint-penetration groove welds, the maximum design stress range calculated by Equation A-3-1 applies only to welds that have been ultrasonically or radiographically tested and meet the acceptance requirements of Section 6.12.2 or 6.13.2 of AWS D1.1.

No evaluation of fatigue resistance is required if the live load stress range is less than the threshold stress range, FTH. See Table A-3.1.

No evaluation of fatigue resistance of members consisting of shapes or plate is required if the number of cycles of application of live load is less than 20,000. No evaluation of fatigue resistance of members consisting of HSS in building-type structures subject to code mandated wind loads is required.

The cyclic load resistance determined by the provisions of this Appendix is applicable to structures with suitable corrosion protection or subject only to mildly corrosive atmospheres, such as normal atmospheric conditions.

The cyclic load resistance determined by the provisions of this Appendix is applicable only to structures subject to temperatures not exceeding 300 °F (150 °C).

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
The engineer of record shall provide either complete details including weld sizes or shall specify the planned cycle life and the maximum range of moments, shears and reactions for the connections.

3.2. CALCULATION OF MAXIMUM STRESSES AND STRESS RANGES

Calculated stresses shall be based upon elastic analysis. Stresses shall not be amplified by stress concentration factors for geometrical discontinuities.

For bolts and threaded rods subject to axial tension, the calculated stresses shall include the effects of prying action, if any. In the case of axial stress combined with bending, the maximum stresses, of each kind, shall be those determined for concurrent arrangements of the applied load.

For members having symmetric cross sections, the fasteners and welds shall be arranged symmetrically about the axis of the member, or the total stresses including those due to eccentricity shall be included in the calculation of the stress range.

For axially loaded angle members where the center of gravity of the connecting welds lies between the line of the center of gravity of the angle cross section and the center of the connected leg, the effects of eccentricity shall be ignored. If the center of gravity of the connecting welds lies outside this zone, the total stresses, including those due to joint eccentricity, shall be included in the calculation of stress range.

3.3. DESIGN STRESS RANGE

The range of stress at service loads shall not exceed the design stress range computed as follows.

(a) For stress categories A, B, B', C, D, E and E' the design stress range, \(F_{SR} \), shall be determined by Equation A-3-1 or A-3-1M, as follows:

\[
F_{SR} = \left(\frac{C_f}{n_{SR}} \right)^{0.333} \geq F_{TH} \tag{A-3-1}
\]

\[
F_{SR} = \left(\frac{C_f \times 329}{n_{SR}} \right)^{0.333} \geq F_{TH} \quad \text{(S.I.)} \tag{A-3-1M}
\]

where

- \(C_f \) = constant from Table A-3.1 for the category
- \(F_{SR} \) = service stress range, ksi (MPa)
- \(F_{TH} \) = threshold fatigue stress range, maximum stress range for indefinite design life from Table A-3.1, ksi (MPa)
- \(n_{SR} \) = number of stress range fluctuations in design life
- \(n_{SR} \) = number of stress range fluctuations per day \(\times 365 \times \text{years of design life} \)

(b) For stress category F, the design stress range, \(F_{SR} \), shall be determined by Equation A-3-2 or A-3-2M as follows:
For tension-loaded plate elements connected at their end by cruciform, T, or corner details with complete-joint-penetration (CJP) groove welds or partial-joint-penetration (PJP) groove welds, fillet welds, or combinations of the preceding, transverse to the direction of stress, the design stress range on the cross section of the tension-loaded plate element at the toe of the weld shall be determined as follows:

(i) Based upon crack initiation from the toe of the weld on the tension loaded plate element the design stress range, F_{SR}, shall be determined by Equation A-3-3 or A-3-3M, for stress category C as follows:

$$F_{SR} = \left(\frac{44 \times 10^8}{n_{SR}} \right)^{0.333} \geq 10 \quad \text{(A-3-3)}$$

$$F_{SR} = \left(\frac{14.4 \times 10^{11}}{n_{SR}} \right)^{0.333} \geq 68.9 \quad \text{(S.I.) (A-3-3M)}$$

(ii) Based upon crack initiation from the root of the weld the design stress range, F_{SR}, on the tension loaded plate element using transverse PJP groove welds, with or without reinforcing or contouring fillet welds, the design stress range on the cross section at the toe of the weld shall be determined by Equation A-3-4 or A-3-4M, stress category C' as follows:

$$F_{SR} = R_{PJP} \left(\frac{44 \times 10^8}{n_{SR}} \right)^{0.333} \quad \text{(A-3-4)}$$

$$F_{SR} = R_{PJP} \left(\frac{14.4 \times 10^{11}}{n_{SR}} \right)^{0.333} \quad \text{(S.I.) (A-3-4M)}$$

where

R_{PJP} is the reduction factor for reinforced or nonreinforced transverse PJP groove welds determined as follows:
\[
R_{p,jp} = \left(\frac{0.65 - 0.59 \left(\frac{2a}{t_p} \right) + 0.72 \left(\frac{w}{t_p} \right)}{t_p^{0.167}} \right) \leq 1.0
\]

\[
R_{p,jp} = \left(\frac{1.12 - 1.01 \left(\frac{2a}{t_p} \right) + 1.24 \left(\frac{w}{t_p} \right)}{t_p^{0.167}} \right) \leq 1.0 \quad \text{(S.I.)}
\]

If \(R_{p,jp} = 1.0 \), use stress category C.

\(2a \) = the length of the nonwelded root face in the direction of the thickness of the tension-loaded plate, in. (mm)

\(w \) = the leg size of the reinforcing or contouring fillet, if any, in the direction of the thickness of the tension-loaded plate, in. (mm)

\(t_p \) = thickness of tension loaded plate, in. (mm)

(iii) Based upon crack initiation from the roots of a pair of transverse fillet welds on opposite sides of the tension loaded plate element the design stress range, \(F_{SR} \), on the cross section at the toe of the welds shall be determined by Equation A-3-5 or A-3-5M, stress category C'' as follows:

\[
F_{SR} = R_{\text{FIL}} \left(\frac{44 \times 10^8}{n_{SR}} \right)^{0.333}
\]

(A-3-5)

\[
F_{SR} = R_{\text{FIL}} \left(\frac{14.4 \times 10^{11}}{n_{SR}} \right)^{0.333}
\]

(S.I.)

(A-3-5M)

where

\(R_{\text{FIL}} \) is the reduction factor for joints using a pair of transverse fillet welds only.

\[
R_{\text{FIL}} = \left(\frac{0.06 + 0.72 \left(\frac{w}{t_p} \right)}{t_p^{0.167}} \right) \leq 1.0
\]

\[
R_{\text{FIL}} = \left(\frac{0.10 + 1.24 \left(\frac{w}{t_p} \right)}{t_p^{0.167}} \right) \leq 1.0 \quad \text{(S.I.)}
\]

If \(R_{\text{FIL}} = 1.0 \), use stress category C.

3.4. BOLTS AND THREADED PARTS
The range of stress at service loads shall not exceed the stress range computed as follows.

(a) For mechanically fastened connections loaded in shear, the maximum range of stress in the connected material at service loads shall not exceed the design stress range computed using Equation A-3-1 where C_I and F_{TH} are taken from Section 2 of Table A-3.1.

(b) For high-strength bolts, common bolts and threaded anchor rods with cut, ground or rolled threads, the maximum range of tensile stress on the net tensile area from applied axial load and moment plus load due to prying action shall not exceed the design stress range computed using Equation A-3-6 or A-3-6M (stress category G). The net tensile area is given by Equation A-3-7 or A-3-7M.

$$F_{SR} = \left(\frac{3.9 \times 10^8}{n_{SR}} \right)^{0.333} \geq 7 \quad (A-3-6)$$

$$F_{SR} = \left(\frac{1.28 \times 10^{11}}{n_{SR}} \right)^{0.333} \geq 48 \quad (S.I.) \quad (A-3-6M)$$

$$A_t = \frac{\pi}{4} \left(\frac{d_b - 0.9743}{n} \right)^2 \quad (A-3-7)$$

$$A_t = \frac{\pi}{4} \left(d_b - 0.9382p \right)^2 \quad (S.I.) \quad (A-3-7M)$$

where

- $p = pitch$, in. per thread (mm per thread)
- $d_b =$ the nominal diameter (body or shank diameter), in. (mm)
- $n =$ threads per in. (threads per mm)

For joints in which the material within the grip is not limited to steel or joints which are not tensioned to the requirements of Table J3.1 or J3.1M, all axial load and moment applied to the joint plus effects of any prying action shall be assumed to be carried exclusively by the bolts or rods.

For joints in which the material within the grip is limited to steel and which are pretensioned to the requirements of Table J3.1 or J3.1M, an analysis of the relative stiffness of the connected parts and bolts shall be permitted to be used to determine the tensile stress range in the pretensioned bolts due to the total service live load and moment plus effects of any prying action. Alternatively, the stress range in the bolts shall be assumed to be equal to the stress on the net tensile area due to 20 percent of the absolute value of the service load axial load and moment from dead, live and other loads.

3.5. SPECIAL FABRICATION AND ERECTION REQUIREMENTS

Longitudinal backing bars are permitted to remain in place, and if used, shall be continuous. If splicing is necessary for long joints, the bar shall be joined with complete penetration butt joints and the reinforcement ground prior to
assembly in the joint. Longitudinal backing, if left in place, shall be attached with continuous fillet welds.

In transverse joints subject to tension, backing bars, if used, shall be removed and the joint back gouged and welded.

In transverse complete-joint-penetration T and corner joints, a reinforcing fillet weld, not less than ¼ in. (6 mm) in size shall be added at reentrant corners.

The surface roughness of thermally cut edges subject to cyclic stress ranges, that include tension, shall not exceed 1,000 μin. (25 μm), where ASME B46.1 is the reference standard.

User Note: AWS C4.1 Sample 3 may be used to evaluate compliance with this requirement.

Reentrant corners at cuts, copes and weld access holes shall form a radius of not less than 3/8 in. (10 mm) by predrilling or subpunching and reaming a hole, or by thermal cutting to form the radius of the cut. If the radius portion is formed by thermal cutting, the cut surface shall be ground to a bright metal surface.

For transverse butt joints in regions of tensile stress, weld tabs shall be used to provide for cascading the weld termination outside the finished joint. End dams shall not be used. Run-off tabs shall be removed and the end of the weld finished flush with the edge of the member.

See Section J2.2b for requirements for end returns on certain fillet welds subject to cyclic service loading.
TABLE A-3.1
Fatigue Design Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Stress Category</th>
<th>Constant C_f</th>
<th>Threshold F_{TH} ksi (MPa)</th>
<th>Potential Crack Initiation Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION 1 – PLAIN MATERIAL AWAY FROM ANY WELDING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Base metal, except non-coated weathering steel, with rolled or cleaned</td>
<td>A</td>
<td>250×10^6</td>
<td>24 (165)</td>
<td>Away from all welds or structural connections</td>
</tr>
<tr>
<td>surface. Flame-cut edges with surface roughness value of 1,000 μm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(25 μm) or less, but without reentrant corners.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2 Non-coated weathering steel base metal with rolled or cleaned surface.</td>
<td>B</td>
<td>120×10^6</td>
<td>16 (110)</td>
<td>Away from all welds or structural connections</td>
</tr>
<tr>
<td>Flame-cut edges with surface roughness value of 1,000 μm. (25 μm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or less, but without reentrant corners.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3 Member with drilled or reamed holes. Member with re-entrant corners at</td>
<td>B</td>
<td>120×10^6</td>
<td>16 (110)</td>
<td>At any external edge or at hole perimeter</td>
</tr>
<tr>
<td>cope, cuts, block-outs or other geometrical discontinuities made to</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>requirements of Appendix 3.5, except weld access holes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4 Rolled cross sections with weld access holes made to requirements of</td>
<td>C</td>
<td>44×10^6</td>
<td>10 (69)</td>
<td>At reentrant corner of weld access hole or at any small hole (may contain bolt for minor connections)</td>
</tr>
<tr>
<td>Section J1.6 and Appendix 3.5. Members with drilled or reamed holes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>containing bolts for attachment of light bracing where there is a small</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>longitudinal component of brace force.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECTION 2 – CONNECTED MATERIAL IN MECHANICALLY FASTENED JOINTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 Gross area of base metal in lap joints connected by high-strength bolts</td>
<td>B</td>
<td>120×10^6</td>
<td>16 (110)</td>
<td>Through gross section near hole</td>
</tr>
<tr>
<td>in joints satisfying all requirements for slip-critical connections</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2 Base metal at net section of high-strength bolted joints, designed on</td>
<td>B</td>
<td>120×10^6</td>
<td>16 (110)</td>
<td>In net section originating at side of hole</td>
</tr>
<tr>
<td>the basis of bearing resistance, but fabricated and installed to all</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>requirements for slip-critical connections.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Base metal at the net section of other mechanically fastened joints</td>
<td>D</td>
<td>22×10^6</td>
<td>7 (48)</td>
<td>In net section originating at side of hole</td>
</tr>
<tr>
<td>except eye bars and pin plates.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4 Base metal at net section of eybar head or pin plate.</td>
<td>E</td>
<td>11×10^6</td>
<td>4.5 (31)</td>
<td>In net section originating at side of hole</td>
</tr>
</tbody>
</table>
TABLE A-3.1 (cont’d)
Fatigue Design Parameters

<table>
<thead>
<tr>
<th>Table A-3.1</th>
<th>1.1 and 1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>(b)</td>
</tr>
<tr>
<td>(c)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>(b)</td>
</tr>
<tr>
<td>(c)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>(b)</td>
</tr>
<tr>
<td>(c)</td>
</tr>
</tbody>
</table>

(Note: figures are for slip critical bolted connections)

<table>
<thead>
<tr>
<th>2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>(b)</td>
</tr>
<tr>
<td>(c)</td>
</tr>
</tbody>
</table>

(Note: figures are for bolted connections designed to bear, meeting the requirements of slip critical connections)

<table>
<thead>
<tr>
<th>2.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>(b)</td>
</tr>
<tr>
<td>(c)</td>
</tr>
</tbody>
</table>

(Note: figures are for snug-tightened bolts, rivets, or other mechanical fasteners)

<table>
<thead>
<tr>
<th>2.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>(b)</td>
</tr>
</tbody>
</table>
TABLE A-3.1 (Cont’d)

Fatigue Design Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Stress Category</th>
<th>Constant C_f</th>
<th>Threshold F_{TH}</th>
<th>Potential Crack Initiation Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION 3 – WELDED JOINTS JOINING COMPONENTS OF BUILT-UP MEMBERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1 Base metal and weld metal in members without attachments built up of plates or shapes connected by continuous longitudinal complete-joint-penetration groove welds, back gouged and welded from second side, or by continuous fillet welds.</td>
<td>B</td>
<td>120×10^6</td>
<td>16 (110)</td>
<td>From surface or internal discontinuities in weld away from end of weld</td>
</tr>
<tr>
<td>3.2 Base metal and weld metal in members without attachments built up of plates or shapes, connected by continuous longitudinal complete-joint-penetration groove welds with backing bars not removed, or by continuous partial-joint-penetration groove welds.</td>
<td>B’</td>
<td>61×10^6</td>
<td>12 (83)</td>
<td>From surface or internal discontinuities in weld, including weld attaching backing bars</td>
</tr>
<tr>
<td>3.3 Base metal at weld metal terminations of longitudinal welds at weld access holes in connected built-up members.</td>
<td>D</td>
<td>22×10^6</td>
<td>7 (48)</td>
<td>From the weld termination into the web or flange</td>
</tr>
<tr>
<td>3.4 Base metal at ends of longitudinal intermittent fillet weld segments.</td>
<td>E</td>
<td>11×10^6</td>
<td>4.5 (31)</td>
<td>In connected material at start and stop locations of any weld deposit</td>
</tr>
<tr>
<td>3.5 Base metal at ends of partial length welded coverplates narrower than the flange having square or tapered ends, with or without welds across the ends; and coverplates wider than the flange with welds across the ends.</td>
<td>E</td>
<td>11×10^6</td>
<td>4.5 (31)</td>
<td>In flange at toe of end weld or in flange at termination of longitudinal weld or in edge of flange with wide coverplates</td>
</tr>
<tr>
<td>Flange thickness ≤ 0.8 in. (20 mm)</td>
<td>E</td>
<td>3.9×10^6</td>
<td>2.6 (18)</td>
<td></td>
</tr>
<tr>
<td>Flange thickness > 0.8 in. (20 mm)</td>
<td>E’</td>
<td>3.9×10^6</td>
<td>2.6 (18)</td>
<td></td>
</tr>
<tr>
<td>3.6 Base metal at ends of partial length welded coverplates wider than the flange without welds across the ends.</td>
<td>E’</td>
<td>3.9×10^6</td>
<td>2.6 (18)</td>
<td>In edge of flange at end of coverplate weld</td>
</tr>
<tr>
<td>SECTION 4 – LONGITUDINAL FILLET WELDED END CONNECTIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 Base metal at junction of axially loaded members with longitudinally welded end connections. Welds shall be on each side of the axis of the member to balance weld stresses.</td>
<td>E</td>
<td>11×10^6</td>
<td>4.5 (31)</td>
<td>Initiating from end of any weld termination extending into the base metal</td>
</tr>
<tr>
<td>$t \leq 0.8$ in. (20 mm)</td>
<td>E</td>
<td>3.9×10^6</td>
<td>2.6 (18)</td>
<td></td>
</tr>
<tr>
<td>$t > 0.8$ in. (20 mm)</td>
<td>E’</td>
<td>3.9×10^6</td>
<td>2.6 (18)</td>
<td></td>
</tr>
</tbody>
</table>
TABLE A-3.1 (Cont’d)
Fatigue Design Parameters
TABLE A-3.1 (Cont’d)

Fatigue Design Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Stress Category</th>
<th>Constant C_i</th>
<th>Threshold F_{TH} ksi (MPa)</th>
<th>Potential Crack Initiation Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION 5 – WELDED JOINTS TRANSVERSE TO DIRECTION OF STRESS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.1 Weld metal and base metal in or adjacent to complete-joint-penetration groove welded splices in rolled or welded cross sections with welds ground essentially parallel to the direction of stress and with soundness established by radiographic or ultrasonic inspection in accordance with the requirements of Sections 6.12 or 6.13 of AWS D1.1.</td>
<td>B</td>
<td>120×10^6</td>
<td>16 (110)</td>
<td>From internal discontinuities in weld metal or along the fusion boundary</td>
</tr>
<tr>
<td>5.2 Weld metal and base metal in or adjacent to complete-joint-penetration groove welded splices with welds ground essentially parallel to the direction of stress at transitions in thickness or width made on a slope no greater than 1:2½ and with weld soundness established by radiographic or ultrasonic inspection in accordance with the requirements of Sections 6.12 or 6.13 of AWS D1.1. $F_y \geq 90$ ksi (620 MPa)</td>
<td>B′</td>
<td>120×10^6</td>
<td>16 (110)</td>
<td>From internal discontinuities in filler metal or along fusion boundary or at start of transition when $F_y \geq 90$ ksi (620 MPa)</td>
</tr>
<tr>
<td>5.3 Base metal with F_y equal to or greater than 90 ksi (620 MPa) and weld metal in or adjacent to complete-joint-penetration groove welded splices with welds ground essentially parallel to the direction of stress at transitions in width made on a radius of not less than 2 ft (600 mm) with the point of tangency at the end of the groove weld and with weld soundness established by radiographic or ultrasonic inspection in accordance with the requirements of Sections 6.12 or 6.13 of AWS D1.1.</td>
<td>B′</td>
<td>61×10^6</td>
<td>12 (83)</td>
<td>From internal discontinuities in filler metal or discontinuities along the fusion boundary</td>
</tr>
<tr>
<td>5.4 Weld metal and base metal in or adjacent to the toe of complete-joint-penetration groove welds in T or corner joints or splices, with or without transitions in thickness having slopes no greater than 1:2½, when weld reinforcement is not removed and with weld soundness established by radiographic or ultrasonic inspection in accordance with the requirements of Sections 6.12 or 6.13 of AWS D1.1.</td>
<td>C</td>
<td>44×10^6</td>
<td>10 (69)</td>
<td>From surface discontinuity at toe of weld extending into base metal or into weld metal.</td>
</tr>
</tbody>
</table>
5.5 Base metal and weld metal at transverse end connections of tension-loaded plate elements using partial-joint penetration groove welds in butt or T or corner joints, with reinforcing or contouring fillets, \(F_{wtr} \) shall be the smaller of the toe crack or root crack stress range.

Crack initiating from weld toe:

<table>
<thead>
<tr>
<th></th>
<th>(C)</th>
<th>(44 \times 10^{8})</th>
<th>(10) (69)</th>
</tr>
</thead>
</table>

Crack initiating from weld root:

<table>
<thead>
<tr>
<th></th>
<th>(C')</th>
<th>Eqn. A-3-4 or A-3-4M</th>
<th>None provided</th>
</tr>
</thead>
</table>

Initiating from geometrical discontinuity at toe of weld extending into base metal.

Initiating at weld root subject to tension extending into and through weld.
TABLE A-3.1 (Cont’d)

Fatigue Design Parameters

<table>
<thead>
<tr>
<th>5.1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
<td>(b)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.3</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.4</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.5</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
</tbody>
</table>
TABLE A-3.1 (Cont’d)

Fatigue Design Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Stress Category</th>
<th>Constant C_f</th>
<th>Threshold F_{TH} (ksi)</th>
<th>Potential Crack Initiation Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6 Base metal and weld metal at transverse end connections of tension-loaded plate elements using a pair of fillet welds on opposite sides of the plate. F_{SR} shall be the smaller of the toe crack or root crack stress range. Crack initiating from weld toe:</td>
<td>C</td>
<td>4.4×10^8</td>
<td>10 (69)</td>
<td>Initiating from geometrical discontinuity at toe of weld extending into base metal. Crack initiating from weld root:</td>
</tr>
<tr>
<td>5.7 Base metal of tension loaded plate elements and on girders and rolled beam webs or flanges at toe of transverse fillet welds adjacent to welded transverse stiffeners.</td>
<td>C</td>
<td>4.4×10^8</td>
<td>10 (69)</td>
<td>From geometrical discontinuity at toe of fillet extending into base metal</td>
</tr>
</tbody>
</table>

SECTION 6 – BASE METAL AT WELDED TRANSVERSE MEMBER CONNECTIONS
6.1 Base metal at details attached by complete-joint-penetration groove welds subject to longitudinal loading only when the detail embodies a transition radius \(R \) with the weld termination ground smooth and with weld soundness established by radiographic or ultrasonic inspection in accordance with the requirements of 6.12 or 6.13 of AWS D1.1.

<table>
<thead>
<tr>
<th></th>
<th>(R \geq 24 \text{ in.}) (600 mm)</th>
<th>(24 \text{ in.} > R \geq 6 \text{ in.}) (600 mm > (R \geq 150 \text{ mm}))</th>
<th>(6 \text{ in.} > R \geq 2 \text{ in.}) (150 mm > (R \geq 50 \text{ mm}))</th>
<th>(2 \text{ in.}) (50 mm) > (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>(120 \times 10^6)</td>
<td>16</td>
<td>(110)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>(44 \times 10^6)</td>
<td>10</td>
<td>(69)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>(22 \times 10^6)</td>
<td>7</td>
<td>(48)</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>(11 \times 10^6)</td>
<td>4.5</td>
<td>(31)</td>
<td></td>
</tr>
</tbody>
</table>

Near point of tangency of radius at edge of member.
TABLE A-3.1 (Cont’d)

Fatigue Design Parameters

<table>
<thead>
<tr>
<th>5.6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>(b)</td>
</tr>
<tr>
<td>(c)</td>
</tr>
<tr>
<td>(d)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5.7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>(b)</td>
</tr>
<tr>
<td>(c)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>(a)</td>
</tr>
<tr>
<td>(b)</td>
</tr>
<tr>
<td>(c)</td>
</tr>
</tbody>
</table>
TABLE A-3.1 (Cont’d)
Fatigue Design Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Stress Category</th>
<th>Constant C_f</th>
<th>Threshold F_{TH} ksi (MPa)</th>
<th>Potential Crack Initiation Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>SECTION 6 – BASE METAL AT WELDED TRANSVERSE MEMBER CONNECTIONS (cont’d)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.2 Base metal at details of equal thickness attached by complete-joint-penetration groove welds subject to transverse loading with or without longitudinal loading when the detail embodies a transition radius R with the weld termination ground smooth and with weld soundness established by radiographic or ultrasonic inspection in accordance with the requirements of Sections 6.12 or 6.13 of AWS D1.1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>When weld reinforcement is removed:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R \geq 24$ in. (600 mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 in. > $R \geq 6$ in. (600 mm > $R \geq 150$ mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 in. > $R \geq 2$ in. (150 mm > $R \geq 50$ mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 in. (50 mm) > R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>120×10^8</td>
<td>16 (110)</td>
<td>Near points of tangency of radius or in the weld or at fusion boundary or member or attachment</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>44×10^8</td>
<td>10 (69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>22×10^8</td>
<td>7 (48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>11×10^8</td>
<td>4.5 (31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When weld reinforcement is not removed:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R \geq 24$ in. (600 mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 in. > $R \geq 6$ in. (600 mm > $R \geq 150$ mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 in. > $R \geq 2$ in. (150 mm > $R \geq 50$ mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 in. (50 mm) > R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>44×10^8</td>
<td>10 (69)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>22×10^8</td>
<td>7 (48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>11×10^8</td>
<td>4.5 (31)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.3 Base metal at details of unequal thickness attached by complete-joint-penetration groove welds subject to transverse loading with or without longitudinal loading when the detail embodies a transition radius R with the weld termination ground smooth and with weld soundness established by radiographic or ultrasonic inspection in accordance with the requirements of Sections 6.12 or 6.13 of AWS D1.1:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>When weld reinforcement is removed:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R > 2$ in. (50 mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R \leq 2$ in. (50 mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>When reinforcement is not removed:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any radius</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>22×10^8</td>
<td>7 (48)</td>
<td>At toe of weld along edge of thinner material</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>11×10^8</td>
<td>4.5 (31)</td>
<td>In weld termination in small radius</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>11×10^8</td>
<td>4.5 (31)</td>
<td>At toe of weld along edge of</td>
<td></td>
</tr>
</tbody>
</table>

Specification for Structural Steel Buildings, Public Review Draft dated March 1, 2009

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
TABLE A-3.1 (Cont’d)

Fatigue Design Parameters
TABLE A-3.1 (Cont’d)
Fatigue Design Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Stress Category</th>
<th>Constant C_f</th>
<th>Threshold F_{TH} ksi (MPa)</th>
<th>Potential Crack Initiation Point</th>
</tr>
</thead>
</table>

SECTION 6 – BASE METAL AT WELDED TRANSVERSE MEMBER CONNECTIONS (cont’d)

6.4 Base metal subject to longitudinal stress at transverse members, with or without transverse stress, attached by fillet or partial penetration groove welds parallel to direction of stress when the detail embodies a transition radius, R, with weld termination ground smooth:

- $R > 2$ in. (50 mm)
 - D 22×10^8
 - $7 \ (48)$
- $R \leq 2$ in. (50 mm)
 - E 11×10^8
 - $4.5 \ (31)$

Initiating in base metal at the weld termination or at the toe of the weld extending into the base metal.

SECTION 7 – BASE METAL AT SHORT ATTACHMENTS

7.1 Base metal subject to longitudinal loading at details with welds parallel or transverse to the direction of stress where the detail embodies no transition radius and with detail length in direction of stress, a, and thickness of the attachment, b:

- $a < 2$ in. (50 mm)
 - C 44×10^8
 - $10 \ (69)$
- 2 in. (50 mm) $\leq a <$ lesser of 12 b or 4 in. (100 mm)
 - D 22×10^8
 - $7 \ (48)$
- $a > 4$ in. (100 mm) when $b > 0.8$ in. (20 mm)
 - E 11×10^8
 - $4.5 \ (31)$
 - E' 3.9×10^8
 - $2.6 \ (18)$
- $a >$ lesser of 12b or 4 in. (100 mm) when $b \leq 0.8$ in. (20 mm)

Initiating in base metal at the weld termination or at the toe of the weld extending into the base metal.

7.2 Base metal subject to longitudinal stress at details attached by fillet or partial-joint-penetration groove welds, with or without transverse load on detail, when the detail embodies a transition radius, R, with weld termination ground smooth:

- $R > 2$ in. (50 mm)
 - D 22×10^8
 - $7 \ (48)$
- $R \leq 2$ in. (50 mm)
 - E 11×10^8
 - $4.5 \ (31)$

Initiating in base metal at the weld termination, extending into the base metal.

“Attachment” as used herein, is defined as any steel detail welded to a member which, by its mere presence and independent of its loading, causes a discontinuity in the stress flow in the member and thus reduces the fatigue resistance.
TABLE A-3.1 (Cont’d)

Fatigue Design Parameters

<table>
<thead>
<tr>
<th>6.4</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>7.2</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
</tbody>
</table>

Specification for Structural Steel Buildings, Public Review Draft dated March 1, 2009

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
Fatigue Design Parameters

<table>
<thead>
<tr>
<th>Description</th>
<th>Stress Category</th>
<th>Constant C_f</th>
<th>Threshold F_{TH} ksi (MPa)</th>
<th>Potential Crack Initiation Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Base metal at stud-type shear connectors attached by fillet or automatic</td>
<td>C</td>
<td>44×10^8</td>
<td>10 (69)</td>
<td>At toe of weld in base metal</td>
</tr>
<tr>
<td>stud welding.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2 Shear on throat of continuous or intermittent longitudinal or transverse</td>
<td>F</td>
<td>150×10^9 (Eqn. A-3-2 or A-3-2M)</td>
<td>8 (55)</td>
<td>Initiating at the root of the fillet weld, extending into the weld</td>
</tr>
<tr>
<td>fillet welds.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.3 Base metal at plug or slot welds.</td>
<td>E</td>
<td>11×10^8</td>
<td>4.5 (31)</td>
<td>Initiating in the base metal at the end of the plug or slot weld, extending into the base metal</td>
</tr>
<tr>
<td>8.4 Shear on plug or slot welds.</td>
<td>F</td>
<td>150×10^9 (Eqn. A-3-2 or A-3-2M)</td>
<td>8 (55)</td>
<td>Initiating in the weld at the faying surface, extending into the weld</td>
</tr>
<tr>
<td>8.5 Snug-tightened high-strength bolts, common bolts, threaded anchor rods</td>
<td>G</td>
<td>3.9×10^9</td>
<td>7 (48)</td>
<td>Initiating at the root of the threads, extending into the fastener</td>
</tr>
<tr>
<td>and hanger rods with cut, ground or rolled threads. Stress range on tensile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>stress area due to live load plus prying action when applicable.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE A-3.1 (Cont’d)
Fatigue Design Parameters

<table>
<thead>
<tr>
<th>TABLE A-3.1</th>
<th>8.1</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
<tr>
<td>8.3</td>
<td>(a)</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>(a)</td>
<td>(b)</td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
</tbody>
</table>
APPENDIX 4

STRUCTURAL DESIGN FOR FIRE CONDITIONS

This appendix provides criteria for the design and evaluation of structural steel components, systems and frames for fire conditions. These criteria provide for the determination of the heat input, thermal expansion and degradation in mechanical properties of materials at elevated temperatures that cause progressive decrease in strength and stiffness of structural components and systems at elevated temperatures.

The appendix is organized as follows:

4.2. Structural Design for Fire Conditions by Analysis
4.3. Design by Qualification Testing

4.1. GENERAL PROVISIONS

The methods contained in this appendix provide regulatory evidence of compliance in accordance with the design applications outlined in this section.

The appendix uses the following terms in addition to the terms in the Glossary.

Active fire protection. Building materials and systems that are activated by a fire to mitigate adverse effects or to notify people to take some action to mitigate adverse effects.

Compartmentation. Enclosure of a building space with elements that have a specific fire endurance.

Design-basis fire. Set of conditions that define the development of a fire and the spread of combustion products throughout a building or portion thereof.

Elevated temperatures. Heating conditions experienced by building elements or structures as a result of fire which are in excess of the anticipated ambient conditions.

Fire. Destructive burning, as manifested by any or all of the following: light, flame, heat, or smoke.

Fire barrier. Element of construction formed of fire-resisting materials and tested in accordance with an approved standard fire resistance test, to demonstrate compliance with the applicable building code.
Fire endurance. Measure of the elapsed time during which a material or assembly continues to exhibit fire resistance.

Fire resistance. Property of assemblies that prevents or retards the passage of excessive heat, hot gases or flames under conditions of use and enables them to continue to perform a stipulated function.

Flashover. Transition to a state of total surface involvement in a fire of combustible materials within an enclosure.

Heat flux. Radiant energy per unit surface area.

Heat release rate. Rate at which thermal energy is generated by a burning material.

Performance-based design. Engineering approach to structural design that is based on agreed-upon performance goals and objectives, engineering analysis and quantitative assessment of alternatives against those design goals and objectives using accepted engineering tools, methodologies and performance criteria.

Restrained construction. Floor and roof assemblies and individual beams in buildings where the surrounding or supporting structure is capable of resisting substantial thermal expansion throughout the range of anticipated elevated temperatures.

Unrestrained construction. Floor and roof assemblies and individual beams in buildings that are assumed to be free to rotate and expand throughout the range of anticipated elevated temperatures.

1. Performance Objective

Structural components, members and building frame systems shall be designed so as to maintain their load-bearing function during the design-basis fire and to satisfy other performance requirements specified for the building occupancy.

Deformation criteria shall be applied where the means of providing structural fire resistance, or the design criteria for fire barriers, requires consideration of the deformation of the load-carrying structure.

Within the compartment of fire origin, forces and deformations from the design-basis fire shall not cause a breach of horizontal or vertical compartmentation.

2. Design by Engineering Analysis

The analysis methods in Section 4.2 are permitted to be used to document
the anticipated performance of steel framing when subjected to design-basis fire scenarios. Methods in Section 4.2 provide evidence of compliance with performance objectives established in Section 4.1.1.

The analysis methods in Section 4.2 are permitted to be used to demonstrate an equivalency for an alternative material or method, as permitted by the applicable building code.

Structural design for fire conditions using Appendix 4.2 shall be performed using the load and resistance factor design method in accordance with the provisions of Section B3.3 (LRFD).

3. Design by Qualification Testing

The qualification testing methods in Section 4.3 are permitted to be used to document the fire resistance of steel framing subject to the standardized fire testing protocols required by the applicable building code.

4. Load Combinations and Required Strength

The required strength of the structure and its elements shall be determined from the gravity load combination as follows:

\[
[0.9 \text{ or } 1.2] D + T + 0.5 L + 0.2 S
\]

(A-4-1)

where

- \(D \) = nominal dead load
- \(L \) = nominal occupancy live load
- \(S \) = nominal snow load
- \(T \) = nominal forces and deformations due to the design-basis fire defined in Section 4.2.1

A notional load, \(N_i = 0.002Y_i \), as defined in Section C2.2, where \(N_i \) = notional load applied at framing level \(i \) and \(Y_i \) = gravity load from combination A-4-1 acting on framing level \(i \), shall be applied in combination with the loads stipulated in Equation A-4-1. Unless otherwise stipulated by the applicable building code, \(D \), \(L \) and \(S \) shall be the nominal loads specified in SEI/ASCE 7.

4.2. STRUCTURAL DESIGN FOR FIRE CONDITIONS BY ANALYSIS

It is permitted to design structural members, components and building frames for elevated temperatures in accordance with the requirements of this section.

1. Design-Basis Fire

A design-basis fire shall be identified to describe the heating conditions for the structure. These heating conditions shall relate to the fuel commodities.
and compartment characteristics present in the assumed fire area. The fuel load density based on the occupancy of the space shall be considered when determining the total fuel load. Heating conditions shall be specified either in terms of a heat flux or temperature of the upper gas layer created by the fire. The variation of the heating conditions with time shall be determined for the duration of the fire.

When the analysis methods in Section 4.2 are used to demonstrate an equivalency as an alternative material or method as permitted by the applicable building code, the design-basis fire shall be determined in accordance with ASTM E119.

1.1. Localized Fire

Where the heat release rate from the fire is insufficient to cause flashover, a localized fire exposure shall be assumed. In such cases, the fuel composition, arrangement of the fuel array and floor area occupied by the fuel shall be used to determine the radiant heat flux from the flame and smoke plume to the structure.

1.2. Post-Flashover Compartment Fires

Where the heat release rate from the fire is sufficient to cause flashover, a post-flashover compartment fire shall be assumed. The determination of the temperature versus time profile resulting from the fire shall include fuel load, ventilation characteristics of the space (natural and mechanical), compartment dimensions and thermal characteristics of the compartment boundary.

The fire duration in a particular area shall be determined by considering the total combustible mass, or fuel load available in the space. In the case of either a localized fire or a post-flashover compartment fire, the fire duration shall be determined as the total combustible mass divided by the mass loss rate.

1.3. Exterior Fires

The exposure of exterior structure to flames projecting from windows or other wall openings as a result of a post-flashover compartment fire shall be considered along with the radiation from the interior fire through the opening. The shape and length of the flame projection shall be used along with the distance between the flame and the exterior steelwork to determine the heat flux to the steel. The method identified in Section 4.2.1.2 shall be used for describing the characteristics of the interior compartment fire.

1.4. Active Fire Protection Systems
The effects of active fire protection systems shall be considered when
describing the design-basis fire.

Where automatic smoke and heat vents are installed in nonsprinklered
spaces, the resulting smoke temperature shall be determined from calcula-
tion.

2. Temperatures in Structural Systems under Fire Conditions

Temperatures within structural members, components and frames due to the
heating conditions posed by the design-basis fire shall be determined by a
heat transfer analysis.

3. Material Strengths at Elevated Temperatures

Material properties at elevated temperatures shall be determined from test
data. In the absence of such data, it is permitted to use the material proper-
ties stipulated in this section. These relationships do not apply for steels
with a yield strength in excess of 65 ksi (448 MPa) or concretes with
specified compression strength in excess of 8,000 psi (55 MPa).

3.1. Thermal Elongation

The coefficients of expansion shall be taken as follows:

(a) For structural and reinforcing steels: For calculations at temperatures
above 150°F (65°C), the coefficient of thermal expansion shall be 7.8 x
10^{-6}/°F (1.4 x 10^{-5}/°C).

(b) For normal weight concrete: For calculations at temperatures above 150
°F (65 °C), the coefficient of thermal expansion shall be 1.0 x 10^{-5}/°F (1.8 x
10^{-5}/°C).

(c) For lightweight concrete: For calculations at temperatures above 150 °F
(65 °C), the coefficient of thermal expansion shall be 4.4 x 10^{-6}/°F (7.9 x
10^{-5}/°C).

3.2. Mechanical Properties at Elevated Temperatures

The deterioration in strength and stiffness of structural members, compo-
nents, and systems shall be taken into account in the structural analysis of
the frame. The values $F_y(T)$, $F_p(T)$, $F_u(T)$, $E(T)$, $G(T)$, $f_c'(T)$, $E_c(T)$ and
$\varepsilon_{cu}(T)$ at elevated temperature to be used in structural analysis, expressed as
the ratio with respect to the property at ambient, assumed to be 68 °F (20
°C), shall be defined as in Tables A-4.2.1 and A-4.2.2. $F_p(T)$ is the propor-
tional limit at elevated temperatures, which is calculated as a ratio to yield
strength as specified in Table A-4.2.1. It is permitted to interpolate be-
tween these values.
For lightweight concrete (LWC), values of ε_{cu} shall be obtained from tests.

Table A-4.2.1

Properties of Steel at Elevated Temperatures

<table>
<thead>
<tr>
<th>Steel Temperature ($^\circ F$) [ºC]</th>
<th>$k_E = E(T) / E$</th>
<th>$k_p = F_p(T) / F_p$</th>
<th>$k_y = F_y(T) / F_y$</th>
<th>$k_u = F_u(T) / F_u$</th>
</tr>
</thead>
<tbody>
<tr>
<td>68 [20]</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>200 [93]</td>
<td>1.00</td>
<td>1.00</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>400 [204]</td>
<td>0.90</td>
<td>0.81</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>600 [316]</td>
<td>0.78</td>
<td>0.61</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>750 [399]</td>
<td>0.70</td>
<td>0.42</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>800 [427]</td>
<td>0.67</td>
<td>0.36</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>1000 [538]</td>
<td>0.49</td>
<td>0.18</td>
<td>0.66</td>
<td>0.66</td>
</tr>
<tr>
<td>1200 [649]</td>
<td>0.22</td>
<td>0.08</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>1400 [760]</td>
<td>0.11</td>
<td>0.05</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>1600 [871]</td>
<td>0.07</td>
<td>0.04</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>1800 [982]</td>
<td>0.05</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>2000 [1093]</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>2200 [1204]</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

*Use ambient properties.

Table A-4.2.2

Properties of Concrete at Elevated Temperatures

<table>
<thead>
<tr>
<th>Concrete Temperature ($^\circ F$) [ºC]</th>
<th>$k_c = f'_c(T) / f'_c$</th>
<th>$E_c(T)/E_c$</th>
<th>$\varepsilon_u(T)$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NWC</td>
<td>LWC</td>
<td>NWC</td>
</tr>
<tr>
<td>68 [20]</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>200 [93]</td>
<td>0.95</td>
<td>1.00</td>
<td>0.93</td>
</tr>
<tr>
<td>400 [204]</td>
<td>0.90</td>
<td>1.00</td>
<td>0.75</td>
</tr>
<tr>
<td>550 [288]</td>
<td>0.86</td>
<td>1.00</td>
<td>0.61</td>
</tr>
<tr>
<td>600 [316]</td>
<td>0.83</td>
<td>0.98</td>
<td>0.57</td>
</tr>
<tr>
<td>800 [427]</td>
<td>0.71</td>
<td>0.85</td>
<td>0.38</td>
</tr>
<tr>
<td>1000 [538]</td>
<td>0.54</td>
<td>0.71</td>
<td>0.20</td>
</tr>
<tr>
<td>1200 [649]</td>
<td>0.38</td>
<td>0.58</td>
<td>0.092</td>
</tr>
<tr>
<td>1400 [760]</td>
<td>0.21</td>
<td>0.45</td>
<td>0.073</td>
</tr>
<tr>
<td>1600 [871]</td>
<td>0.10</td>
<td>0.31</td>
<td>0.055</td>
</tr>
<tr>
<td>1800 [982]</td>
<td>0.05</td>
<td>0.18</td>
<td>0.036</td>
</tr>
<tr>
<td>2000 [1093]</td>
<td>0.01</td>
<td>0.05</td>
<td>0.018</td>
</tr>
<tr>
<td>2200 [1204]</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
4. Structural Design Requirements

4.1. General Structural Integrity

The structural frame shall be capable of providing adequate strength and deformation capacity to withstand, as a system, the structural actions developed during the fire within the prescribed limits of deformation. The structural system shall be designed to sustain local damage with the structural system as a whole remaining stable.

Continuous load paths shall be provided to transfer all forces from the exposed region to the final point of resistance. The foundation shall be designed to resist the forces and to accommodate the deformations developed during the design-basis fire.

4.2. Strength Requirements and Deformation Limits

Conformance of the structural system to these requirements shall be demonstrated by constructing a mathematical model of the structure based on principles of structural mechanics and evaluating this model for the internal forces and deformations in the members of the structure developed by the temperatures from the design-basis fire.

Individual members shall be provided with adequate strength to resist the shears, axial forces, and moments determined in accordance with these provisions.

Connections shall develop the strength of the connected members or the forces indicated above. Where the means of providing fire resistance requires the consideration of deformation criteria, the deformation of the structural system, or members thereof, under the design-basis fire shall not exceed the prescribed limits.

4.3. Methods of Analysis

4.3a. Advanced Methods of Analysis

The methods of analysis in this section are permitted for the design of all steel building structures for fire conditions. The design-basis fire exposure shall be that determined in Section 4.2.1. The analysis shall include both a thermal response and the mechanical response to the design-basis fire.

The thermal response shall produce a temperature field in each structural element as a result of the design-basis fire and shall incorporate temperature-dependent thermal properties of the structural elements and fire-resistive materials, as per Section 4.2.2.

The mechanical response results in forces and deformations in the

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
structural system subjected to the thermal response calculated from the design-basis fire. The mechanical response shall take into account explicitly the deterioration in strength and stiffness with increasing temperature, the effects of thermal expansions and large deformations. Boundary conditions and connection fixity must represent the proposed structural design. Material properties shall be defined as per Section 4.2.3.

The resulting analysis shall consider all relevant limit states, such as excessive deflections, connection fractures and overall or local buckling.

4.3b. Simple Methods of Analysis

The methods of analysis in this section are permitted to be used for the evaluation of the performance of individual members at elevated temperatures during exposure to fire.

The support and restraint conditions (forces, moments and boundary conditions) applicable at normal temperatures are permitted to be assumed to remain unchanged throughout the fire exposure.

1) Tension Members

It is permitted to model the thermal response of a tension element using a one-dimensional heat transfer equation with heat input as directed by the design-basis fire defined in Section 4.2.1.

The design strength of a tension member shall be determined using the provisions of Chapter D, with steel properties as stipulated in Section 4.2.3 and assuming a uniform temperature over the cross section using the temperature equal to the maximum steel temperature.

2) Compression Members

It is permitted to model the thermal response of a compression element using a one-dimensional heat transfer equation with heat input as directed by the design-basis fire defined in Section 4.2.1.

The design strength of a compression member shall be determined using the provisions of Chapter E with steel properties as stipulated in Section 4.2.3, with the following exception. For steel temperatures equal to or greater than 400°F (204°C), Equation A-4-2 shall be used in lieu of Equations E3-2 and E3-3 to calculate the nominal compressive strength for flexural buckling:

\[
F_{cr}(T) = 0.42 \left(\frac{F_{y}(T)}{F_{y}(T)} \right)^{0.5} F_{y}(T) \tag{A-4-2}
\]

where \(F_{y}(T)\) is the yield stress at elevated temperature and \(F_{y}(T)\) is...
the critical elastic buckling stress calculated from Equation E3-4 with the elastic modulus $E(T)$ at elevated temperature. $F_y(T)$ and $E(T)$ are obtained using coefficients from Table A-4.2.1.

(3) Flexural Members

It is permitted to model the thermal response of flexural elements using a one-dimensional heat transfer equation to calculate bottom flange temperature and to assume that this bottom flange temperature is constant over the depth of the member.

The design strength of a flexural member shall be determined using the provisions of Chapter F with steel properties as stipulated in Section 4.2.3, with the following exception. For steel temperatures equal to or greater than 400 °F (204 °C), Equations A-4-3 through A-4-10alt shall be used in lieu of Equations F2-2 through F2-6 to calculate the nominal flexural strength for lateral-torsional buckling of laterally unbraced doubly symmetric members:

(a) when $L_b \leq L_r$

\[
M_n(T) = C_n \left[M_y(T) + \left[M_y(T) - M_{cr}(T) \left(1 - \frac{L_b}{L_r(T)} \right)^{c_r(T)} \right] \right] \quad (A-4-3)
\]

(b) when $L_b > L_r(T)$

\[
M_n(T) = F_{cr}(T)S_x
\]

\[(A-4-4) \]

where

\[
F_{cr}(T) = \frac{C_n \pi^2 E(T)}{\left(\frac{L_b}{r_{ox}} \right)^2} \sqrt{1 + 0.078 \frac{Jc}{{S_x h_o} \left(\frac{L_b}{r_{ox}} \right)^2}} \quad (A-4-5) \]

\[
L_r(T) \geq 1.95r_{ox} \frac{E(T)}{F_L(T)} \left[\frac{Jc}{{S_x h_o}^2} \sqrt{\frac{Jc}{{S_x h_o}} \frac{L_b}{r_{ox}}} \right] \left[\frac{F_L(T)}{E(T)} \right] \quad (A-4-6)
\]

\[
M_y(T) = S_x F_L(T)
\]

\[(A-4-7) \]

\[
F_L(T) = F_y \left(k_p(T) - 0.3k_y(T) \right)
\]

\[(A-4-8) \]
\[M_p(T) = Z \cdot F_y(T) \]
(A-4-9)

\[c_s(T) = 0.53 + \frac{T}{450} \leq 3.0 \text{ where } T \text{ is in } ^{\circ}F \]
(A-4-10)

\[c_s(T) = 0.6 + \frac{T}{250} \leq 3.0 \text{ where } T \text{ is in } ^{\circ}C \]
(A-4-10M)

The material properties at elevated temperatures \([E(T) \text{ and } F_y(T)]\) and the \(k_p(T)\) and \(k_y(T)\) coefficients are calculated in accordance with Table A-4.2.1, and other terms are as defined in Chapter F.

(4) Composite Floor Members

It is permitted to model the thermal response of flexural elements supporting a concrete slab using a one-dimensional heat transfer equation to calculate bottom flange temperature. That temperature shall be taken as constant between the bottom flange and mid-depth of the web and shall decrease linearly by no more than 25% from the mid-depth of the web to the top flange of the beam.

The design strength of a composite flexural member shall be determined using the provisions of Chapter I, with reduced yield stresses in the steel consistent with the temperature variation described under thermal response.

4.4. Design Strength

The design strength shall be determined as in Section B3.3. The nominal strength, \(R_n\), shall be calculated using material properties, as stipulated in Section 4.2.3, at the temperature developed by the design-basis fire.

4.3. DESIGN BY QUALIFICATION TESTING

1. **Qualification Standards**

Structural members and components in steel buildings shall be qualified for the rating period in conformance with ASTM E119. Demonstration of compliance with these requirements using the procedures specified for steel construction in Section 5 of SEI/ASCE/ SFPE Standard 29-05, Standard Calculation Methods for Structural Fire Protection, is permitted.

2. **Restained Construction**

For floor and roof assemblies and individual beams in buildings, a restrained condition exists when the surrounding or supporting structure is capable of resisting forces and accommodating deformations caused by thermal expansion throughout the range of anticipated elevated temperatures.
Steel beams, girders and frames supporting concrete slabs that are welded or bolted to integral framing members shall be considered restrained construction.

3. Unrestrained Construction

Steel beams, girders and frames that do not support a concrete slab shall be considered unrestrained unless the members are bolted or welded to surrounding construction that has been specifically designed and detailed to resist effects of elevated temperatures.

A steel member bearing on a wall in a single span or at the end span of multiple spans shall be considered unrestrained unless the wall has been designed and detailed to resist effects of thermal expansion.
This appendix applies to the evaluation of the strength and stiffness under static vertical (gravity) loads of existing structures by structural analysis, by load tests, or by a combination of structural analysis and load tests when specified by the engineer of record or in the contract documents. For such evaluation, the steel grades are not limited to those listed in Section A3.1. This appendix does not address load testing for the effects of seismic loads or moving loads (vibrations).

The Appendix is organized as follows:

5.1. General Provisions
5.2. Material Properties
5.3. Evaluation by Structural Analysis
5.4. Evaluation by Load Tests
5.5. Evaluation Report

5.1. GENERAL PROVISIONS

These provisions shall be applicable when the evaluation of an existing steel structure is specified for (a) verification of a specific set of design loadings or (b) determination of the available strength of a load resisting member or system. The evaluation shall be performed by structural analysis (Section 5.3), by load tests (Section 5.4), or by a combination of structural analysis and load tests, as specified in the contract documents. Where load tests are used, the engineer of record shall first analyze the applicable parts of the structure, prepare a testing plan, and develop a written procedure to prevent excessive permanent deformation or catastrophic collapse during testing.

5.2. MATERIAL PROPERTIES

1. Determination of Required Tests

The engineer of record shall determine the specific tests that are required from Section 5.2.2 through 5.2.6 and specify the locations where they are required. Where available, the use of applicable project records shall be permitted to reduce or eliminate the need for testing.

2. Tensile Properties

Tensile properties of members shall be considered in evaluation by structural analysis (Section 5.3) or load tests (Section 5.4). Such properties shall include the yield stress, tensile strength and percent elongation. Where available, certified material test reports or certified reports of tests made by the fabricator or a testing laboratory in accordance with ASTM A6/A6M or A568/A568M, as applicable, shall be permitted for this purpose. Otherwise, tensile tests shall be conducted in accordance with ASTM A370 from samples cut from components of the structure.
3. **Chemical Composition**

Where welding is anticipated for repair or modification of existing structures, the chemical composition of the steel shall be determined for use in preparing a welding procedure specification (WPS). Where available, results from certified material test reports or certified reports of tests made by the fabricator or a testing laboratory in accordance with ASTM procedures shall be permitted for this purpose. Otherwise, analyses shall be conducted in accordance with ASTM A751 from the samples used to determine tensile properties, or from samples taken from the same locations.

4. **Base Metal Notch Toughness**

Where welded tension splices in heavy shapes and plates as defined in Section A3.1d are critical to the performance of the structure, the Charpy V-Notch toughness shall be determined in accordance with the provisions of Section A3.1d. If the notch toughness so determined does not meet the provisions of Section A3.1d, the *engineer of record* shall determine if remedial actions are required.

5. **Weld Metal**

Where structural performance is dependent on existing welded connections, representative samples of weld metal shall be obtained. Chemical analysis and mechanical tests shall be made to characterize the weld metal. A determination shall be made of the magnitude and consequences of imperfections. If the requirements of AWS D1.1 are not met, the *engineer of record* shall determine if remedial actions are required.

6. **Bolts and Rivets**

Representative samples of bolts shall be inspected to determine markings and classifications. Where bolts cannot be properly identified visually, representative samples shall be removed and tested to determine tensile strength in accordance with ASTM F606 or ASTM F606M and the bolt classified accordingly. Alternatively, the assumption that the bolts are ASTM A307 shall be permitted. Rivets shall be assumed to be ASTM A502, Grade 1, unless a higher grade is established through documentation or testing.

5.3. **EVALUATION BY STRUCTURAL ANALYSIS**

1. **Dimensional Data**

 All dimensions used in the evaluation, such as spans, column heights, member spacings, bracing locations, cross section dimensions, thicknesses and connection details, shall be determined from a field survey. Alternatively, when available, it shall be permitted to determine such dimensions from applicable project design or shop drawings with field verification of critical values.

2. **Strength Evaluation**

 Forces (load effects) in members and connections shall be determined by structural analysis applicable to the type of structure evaluated. The load effects shall be determined for the *loads* and *factored load combinations*.
stipulated in Section B2.

The available strength of members and connections shall be determined from applicable provisions of Chapters B through K of this Specification.

3. Serviceability Evaluation

Where required, the deformations at service loads shall be calculated and reported.

5.4. EVALUATION BY LOAD TESTS

1. Determination of Load Rating by Testing

To determine the load rating of an existing floor or roof structure by testing, a test load shall be applied incrementally in accordance with the engineer of record's plan. The structure shall be visually inspected for signs of distress or imminent failure at each load level. Appropriate measures shall be taken if these or any other unusual conditions are encountered.

The tested strength of the structure shall be taken as the maximum applied test load plus the in-situ dead load. The live load rating of a floor structure shall be determined by setting the tested strength equal to $1.2D + 1.6L$, where D is the nominal dead load and L is the nominal live load rating for the structure. The nominal live load rating of the floor structure shall not exceed the load that which can be calculated using applicable provisions of the specification. For roof structures, L_r, S, or R as defined in SEI/ASCE 7, shall be substituted for L. More severe load combinations shall be used where required by applicable building codes.

Periodic unloading shall be considered once the service load level is attained and after the onset of inelastic structural behavior is identified to document the amount of permanent set and the magnitude of the inelastic deformations. Deformations of the structure, such as member deflections, shall be monitored at critical locations during the test, referenced to the initial position before loading. It shall be demonstrated that the deformation of the structure does not increase by more than 10% during a one-hour holding period under sustained, maximum test load. It is permissible to repeat the sequence if necessary to demonstrate compliance.

Deformations of the structure shall also be recorded 24 hours after the test loading is removed to determine the amount of permanent set. Because the amount of acceptable permanent deformation depends on the specific structure, no limit is specified for permanent deformation at maximum loading. Where it is not feasible to load test the entire structure, a segment or zone of not less than one complete bay, representative of the most critical conditions, shall be selected.

2. Serviceability Evaluation

When load tests are prescribed, the structure shall be loaded incrementally to the service load level. Deformations shall be monitored during a one hour holding period under sustained service test load. The structure shall then be unloaded and the deformation recorded.
5.5. EVALUATION REPORT

After the evaluation of an existing structure has been completed, the engineer of record shall prepare a report documenting the evaluation. The report shall indicate whether the evaluation was performed by structural analysis, by load testing or by a combination of structural analysis and load testing. Furthermore, when testing is performed, the report shall include the loads and load combination used and the load-deformation and time-deformation relationships observed. All relevant information obtained from design drawings, material test reports and auxiliary material testing shall also be reported. Finally, the report shall indicate whether the structure, including all members and connections, is adequate to withstand the load effects.
APPENDIX 6

STABILITY BRACING FOR COLUMNS AND BEAMS

This appendix addresses the minimum strength and stiffness necessary to provide a braced point in a column, beam or beam-column. It is organized as follows:

6.2. Column Bracing
6.3. Beam Bracing
6.4. Beam-Column Bracing

User Note: The stability requirements for braced-frame systems are provided in Chapter C. The provisions in this appendix apply to bracing that is provided to stabilize individual columns, beams and beam-columns.

6.1. GENERAL PROVISIONS

Columns with end and intermediate braced points designed to meet the requirements in Section 6.2 are permitted to be designed based on the unbraced length, \(L \), between the braced points with an effective length factor, \(K = 1.0 \). Beams with intermediate braced points designed to meet the requirements in Section 6.3 are permitted to be designed based on the unbraced length, \(L_b \), between the braced points.

When bracing is perpendicular to the members to be braced, the equations in Sections 6.2 and 6.3 shall be used directly. When bracing is oriented at an angle to the member to be braced, these equations shall be adjusted for the angle of inclination. The evaluation of the stiffness furnished by a brace shall include its member and geometric properties, as well as the effects of connections and anchoring details.

User Note: In this appendix, relative and nodal bracing systems are addressed for columns and for beams with lateral bracing. For beams with torsional bracing, nodal and continuous bracing systems are addressed.

A relative brace controls the movement of the braced point with respect to adjacent braced points. A nodal brace controls the movement at the braced point without direct interaction with adjacent braced points. A continuous bracing system consists of bracing that is attached along the entire member length; however, nodal bracing systems with a regular spacing can also be modeled as a continuous system.

The available strength and stiffness of the bracing members and connections shall equal or exceed the required strength and stiffness, respectively, unless analysis indicates that smaller values are justified. A second-order analysis that includes the initial out-of-straightness of the member to obtain brace strength and stiffness requirements is permitted in lieu of the requirements of this appendix.

6.2. COLUMN BRACING

It is permitted to brace an individual column at end and intermediate points along the length using either relative or nodal bracing.

AMERICAN INSTITUTE OF STEEL CONSTRUCTION
1. Relative Bracing

The required strength is

\[P_{rb} = 0.004P_r \] \hspace{1cm} (A-6-1)

The required stiffness is

\[\beta_{br} = \frac{1}{\phi} \left(\frac{2P_r}{L_b} \right) \text{(LRFD)} \quad \beta_{br} = \Omega \left(\frac{2P_r}{L_b} \right) \text{(ASD)} \] \hspace{1cm} (A-6-2)

where

\[\phi = 0.75 \text{ (LRFD)} \quad \Omega = 2.00 \text{ (ASD)} \]

\[L_b = \text{distance between braces, in. (mm)} \]

For design according to Section B3.3 (LRFD)

\[P_r = \text{required strength in axial compression using LRFD load combinations, kips (N)} \]

For design according to Section B3.4 (ASD)

\[P_r = \text{required strength in axial compression using ASD load combinations, kips (N)} \]

2. Nodal Bracing

The required strength is

\[P_{nb} = 0.01P_r \] \hspace{1cm} (A-6-3)

The required stiffness is

\[\beta_{nb} = \frac{1}{\phi} \left(\frac{8P_r}{L_b} \right) \text{(LRFD)} \quad \beta_{nb} = \Omega \left(\frac{8P_r}{L_b} \right) \text{(ASD)} \] \hspace{1cm} (A-6-4)

User Note: These equations correspond to the assumption that nodal braces are equally spaced along the column.

where

\[\phi = 0.75 \text{ (LRFD)} \quad \Omega = 2.00 \text{ (ASD)} \]

For design according to Section B3.3 (LRFD)

\[P_r = \text{required strength in axial compression using LRFD load combinations, kips (N)} \]

For design according to Section B3.4 (ASD)
In Equation A-6-4, \(L_b \) need not be taken less than the maximum unbraced length, \(KL \), permitted for the column based upon the axial required strength, \(P_r \).

6.3. BEAM BRACING

Beams and trusses shall be restrained against rotation about their longitudinal axis at points of support. When a braced point is assumed in the design between points of support, lateral bracing, torsional bracing or a combination of the two shall be provided to prevent the relative displacement of the top and bottom flanges (i.e., to prevent twist). In members subject to double curvature bending, the inflection point shall not be considered a braced point unless bracing is provided at that location.

1. Lateral Bracing

Lateral bracing shall be attached at or near the beam compression flange, except as follows:

1. At the free end of a cantilevered beam, lateral bracing shall be attached at or near the top (tension) flange.
2. For braced beams subject to double curvature bending, lateral bracing shall be attached to both flanges at the braced point nearest the inflection point.

1a. Relative Bracing

The required strength is

\[
P_{rb} = 0.008 M_r C_d / h_o
\]
\[(A-6-5)\]

The required stiffness is

\[
\beta_{br} = \frac{1}{\phi} \left(\frac{4 M_r C_d}{L_b h_o} \right) \text{(LRFD)}
\]
\[
\beta_{br} = \Omega \left(\frac{4 M_r C_d}{L_b h_o} \right) \text{(ASD) (A-6-6)}
\]

where

\[
\phi = 0.75 \text{ (LRFD)}
\]
\[
\Omega = 2.00 \text{ (ASD)}
\]

\(h_o \) = distance between flange centroids, in. (mm)

\(C_d \) = 1.0 except in the following case;

= 2.0 for the brace closest to the inflection point in a beam subject to double curvature bending

\(L_b \) = laterally unbraced length, in. (mm)

For design according to Section B3.3 (LRFD)

\[
M_r = \text{flexural required strength using LRFD load combinations, kip-in. (N-mm)}
\]
For design according to Section B3.4 (ASD)

\[M_r = \text{flexural required strength using ASD load combinations, kip-in. (N-mm)} \]

1b. Nodal Bracing

The required strength is

\[P_{rb} = 0.02M_rC_d / h_o \] \hspace{1cm} (A-6-7)

The required stiffness is

\[\beta_{br} = \frac{1}{\phi} \left(\frac{10M_rC_d}{L_bh_o} \right) \text{(LRFD)} \hspace{1cm} \beta_{br} = \Omega \left(\frac{10M_rC_d}{L_bh_o} \right) \text{(ASD)} \] \hspace{1cm} (A-6-8)

where

\[\phi = 0.75 \text{ (LRFD)} \hspace{1cm} \Omega = 2.00 \text{ (ASD)} \]

For design according to Section B3.3 (LRFD)

\[M_r = \text{flexural required strength using LRFD load combinations, kip-in. (N-mm)} \]

For design according to Section B3.4 (ASD)

\[M_r = \text{flexural required strength using ASD load combinations, kip-in. (N-mm)} \]

In Equation A-6-8, \(L_b\) need not be taken less than the maximum unbraced length permitted for the beam based upon the flexural required strength, \(M_r\).

2. Torsional Bracing

It is permitted to attach torsional bracing at any cross-sectional location, and it need not be attached near the compression flange.

User Note: Torsional bracing can be provided with a moment-connected beam, cross-frame, or other diaphragm element.

2a. Nodal Bracing

The required strength is

\[M_{rb} = \frac{0.024M_rL}{nC_dL_b} \] \hspace{1cm} (A-6-9)

The required stiffness is
\[
\beta_{rb} = \frac{\beta_T}{1 - \frac{\beta_T}{\beta_{sec}}} \quad (A-6-10)
\]

where

\[
\beta_T = \frac{1}{\phi} \left(\frac{2.4LM_n^2}{nEI_y C_b^2} \right) \quad \text{(LRFD)} \quad \beta_T = \Omega \left(\frac{2.4LM_n^2}{nEI_y C_b^2} \right) \quad \text{(ASD)} \quad (A-6-11)
\]

\[
\beta_{sec} = \frac{3.3E}{h_y} \left(\frac{1.5h_s t_s^3}{12} + \frac{t_s h_s^3}{12} \right) \quad (A-6-12)
\]

where

\[
\phi = 0.75 \quad \text{(LRFD)} \quad \Omega = 3.00 \quad \text{(ASD)}
\]

User Note: \(\Omega = 1.5^2 / \phi = 3.00 \) in Equation A-6-11 because the moment term is squared.

- \(L \) = span length, in. (mm)
- \(n \) = number of nodal braced points within the span
- \(E \) = modulus of elasticity of steel = 29,000 ksi (200,000 MPa)
- \(I_y \) = out-of-plane moment of inertia, in.\(^4\) (mm\(^4\))
- \(C_b \) = modification factor defined in Chapter F
- \(t_w \) = beam web thickness, in. (mm)
- \(t_s \) = thickness of web stiffener, in. (mm)
- \(b_s \) = stiffener width for one-sided stiffeners, in. (mm)
 - twice the individual stiffener width for pairs of stiffeners, in. (mm)
- \(\beta_T \) = brace stiffness excluding web distortion, kip-in./rad (N-mm/rad)
- \(\beta_{sec} \) = web distortional stiffness, including the effect of web transverse stiffeners, if any, kip-in./rad (N-mm/rad)

User Note: If \(\beta_{sec} < \beta_T \), Equation A-6-10 is negative, which indicates that torsional beam bracing will not be effective due to inadequate web distortional stiffness.

For design according to Section B3.3 (LRFD)

\[
M_r = \text{flexural required strength using LRFD load combinations, kip-in. (N-mm)}
\]

For design according to Section B3.4 (ASD)

\[
M_r = \text{flexural required strength using ASD load combinations, kip-in. (N-mm)}
\]

When required, the web stiffener shall extend the full depth of the braced member and shall be attached to the flange if the torsional brace is also attached to the flange. Alternatively, it shall be permissible to stop the stiffener short by a distance equal to \(4t_w \) from any beam flange that is not directly attached to the...
torsional brace.

In Equation A-6-9, \(L_b \) need not be taken less than the maximum unbraced length permitted for the beam based upon the flexural required strength, \(M_r \).

2b. Continuous Bracing

For continuous bracing, Equations A-6-9 and A-6-10 shall be used with the following modifications:

1. \(\frac{L}{n} = 1.0 \);
2. \(L_b \) shall be taken equal to the maximum unbraced length permitted for the beam based upon the flexural required strength, \(M_r \);
3. The web distortional stiffness shall be taken as:

\[
\beta_{sec} = \frac{3.3E t_w^3}{12 h_o} \quad (A-6-13)
\]

6.4. BEAM-COLUMN BRACING

For beam-columns, the required strength and stiffness for the axial force shall be determined as specified in Section 6.2, and the required strength and stiffness for the flexure shall be determined as specified in Section 6.3. The values so determined shall be combined as follows:

(a) When relative lateral bracing is used, the required strength shall be taken as the sum of the values determined using Equations A-6-1 and A-6-5, and the required stiffness shall be taken as the sum of the values determined using Equations A-6-2 and A-6-6.

(b) When nodal lateral bracing is used, the required strength shall be taken as the sum of the values determined using Equations A-6-3 and A-6-7, and the required stiffness shall be taken as the sum of the values determined using Equations A-6-4 and A-6-8.

(c) When torsional bracing is provided for flexure in combination with relative or nodal bracing for the axial force, the required strength and stiffness shall be combined or distributed in a manner that is consistent with the resistance provided by the element(s) of the actual bracing details.
APPENDIX 7
ALTERNATIVE METHODS OF DESIGN FOR STABILITY

This appendix presents alternatives to the Direct Analysis Method of design for stability, defined in Chapter C. The two alternative methods covered are the Effective Length Method and the First-Order Analysis Method.

The appendix is organized as follows:

7.1. General Stability Requirements
7.2. Effective Length Method
7.3. First-Order Analysis Method

7.1. GENERAL STABILITY REQUIREMENTS

The general requirements of Section C1 shall apply. As an alternative to the Direct Analysis Method (defined in Sections C1 and C2), it is permissible to design structures for stability in accordance with either the Effective Length Method, specified in Section 7.2, or the First-Order Analysis Method, specified in Section 7.3, subject to the limitations indicated in those sections.

7.2. EFFECTIVE LENGTH METHOD

1. Limitations

The use of the Effective Length Method shall be limited to the following conditions:

(1) The structure supports gravity loads primarily through nominally-vertical columns, walls, or frames.

(2) The ratio of maximum second-order drift to maximum first-order drift (both determined for LRFD load combinations or 1.6 times ASD load combinations) in all stories is equal to or less than 1.5.

2. Required Strengths

The required strengths of components shall be determined from analysis conforming to the requirements of Section C2.1, except that the stiffness reduction indicated in C2.1(2) shall not be applied; the nominal stiffnesses of all structural steel components shall be used. Notional loads shall be applied in the analysis in accordance with Section C2.2b.

User Note: Since the condition specified in Section C2.2b(4) will be satisfied in all cases where the effective length method is applicable, the notional load need only be applied in gravity-only load cases.
3. Available Strengths

The available strengths of members and connections shall be calculated in accordance with the provisions of Chapters D, E, F, G, H, I, J and K, as applicable.

The effective length factor, K, of members subject to compression shall be taken as specified in (a) or (b), below, as applicable.

(a) In braced frame systems, shear wall systems, and other structural systems where lateral stability and resistance to lateral loads does not rely on the flexural stiffness of columns, the effective length factor, K, of members subject to compression shall be taken as unity, unless rational analysis indicates that a lower value is appropriate.

(b) In moment frame systems and other structural systems in which the flexural stiffnesses of columns are considered to contribute to lateral stability and resistance to lateral loads, the effective length factor, K, or elastic critical buckling stress, F_{cr}, of those columns whose flexural stiffnesses are considered to contribute to lateral stability and resistance to lateral loads shall be determined from a sidesway buckling analysis of the structure; K shall be taken as 1.0 for columns whose flexural stiffnesses are not considered to contribute to lateral stability and resistance to lateral loads.

Exception: It is permitted to use $K=1$ in the design of all columns if the ratio of maximum second-order drift to maximum first-order drift (both determined for LRFD load combinations or 1.6 times ASD load combinations) in all stories is equal to or less than 1.1.

User Note: Methods of calculating the effective length factor K are discussed in the Commentary.

Bracing intended to define the unbraced lengths of members shall have sufficient stiffness and strength to control member movement at the braced points.

User Note: Methods of satisfying the bracing requirement are provided in Appendix 6. The requirements of Appendix 6 are not applicable to bracing that is included in the analysis of the overall structure as part of the overall load-resisting system.

7.3. FIRST-ORDER ANALYSIS METHOD

1. Limitations

The use of the First-Order Analysis Method shall be limited to the

AMERICAN INSTITUTE OF STEEL CONSTRUCTION, INC.
following conditions:

(1) The structure supports gravity loads primarily through nominally-
vertical columns, walls, or frames.

(2) The ratio of maximum second-order drift to maximum first-order drift
(both determined for LRFD load combinations or 1.6 times ASD load
combinations) in all stories is equal to or less than 1.5.

User Note: The ratio of second-order drift to first-order drift in a story
may be taken as the B_2 multiplier, calculated as specified in Appendix
8.

(3) The required compressive strengths of all members whose flexural
stiffnesses are considered to contribute to the lateral stability of the
structure satisfy the limitation:

$$\alpha Pr \leq 0.5Py$$ \hspace{1cm} (A-7-2-1)

where

$\alpha = 1.0$ (LRFD) \hspace{1cm} $\alpha = 1.6$ (ASD)

$Pr = \text{required axial compressive strength under LRFD or ASD load}
\text{combinations, kips (N)}$

$Py = \text{member yield strength (}=F_yA\text{), kips (N)}$

2. **Required Strengths**

The required strengths of components shall be determined from a first-
order analysis, with additional requirements (1) and (2) below. The
analysis shall consider flexural, shear, and axial member deformations, and
all other deformations that contribute to displacements of the structure.

(1) All load combinations shall include an additional lateral load, N_i
applied in combination with other loads at each level of the structure:

$$N_i = 2.1\alpha(\Delta/L)Y_{i1} \geq 0.0042Y_{i1}$$ \hspace{1cm} (A-7-2-2)

where

$\alpha = 1.00$ (LRFD) \hspace{1cm} $\alpha = 1.60$ (ASD)

$Y_{i1} = \text{gravity load at level } i \text{ from the LRFD load combination}
or ASD load combination, as applicable, kips (N)$

$\Delta/L = \text{the maximum ratio of } \Delta \text{ to } L \text{ for all stories in the struc-
ture}$

$\Delta = \text{first-order inter-story drift due to the LRFD or ASD load}
\text{combination, as applicable, in. (mm). Where } \Delta \text{ varies}
\text{over the plan area of the structure, } \Delta \text{ shall be the average}
\text{drift weighted in proportion to vertical load or, alterna-}$
The additional lateral load at any level, N_i, shall be distributed over that level in the same manner as the gravity load at the level. The additional lateral loads shall be applied in the direction that provides the greatest destabilizing effect.

User Note: For most building structures, the requirement regarding the direction of N_i may be satisfied as follows: For load combinations that do not include lateral loading, consider two alternative orthogonal directions for the additional lateral load, in a positive and a negative sense in each of the two directions, same direction at all levels; for load combinations that include lateral loading, apply all the additional lateral loads in the direction of the resultant of all lateral loads in the combination.

(2) The non-sway amplification of beam-column moments shall be considered by applying the B_1 amplifier of Appendix 8 to the total member moments.

User Note: Since there is no second-order analysis involved in the First-Order Analysis Method, for design by ASD it is not necessary to amplify ASD load combinations by 1.6 before performing the analysis, as required in the Direct Analysis Method and the Effective Length Method.

3. Available Strengths

The available strengths of members and connections shall be calculated in accordance with the provisions of Chapters D, E, F, G, H, I, J, and K, as applicable.

The effective length factor, K, of all members shall be taken as unity.

Bracing intended to define the unbraced lengths of members shall have sufficient stiffness and strength to control member movement at the braced points.

User Note: Methods of satisfying this requirement are provided in Appendix 6. The requirements of Appendix 6 are not applicable to bracing that is included in the analysis of the overall structure as part of the overall load-resisting system.
APPENDIX 8
APPROXIMATE SECOND-ORDER ANALYSIS

This appendix provides, as an alternative to a rigorous second-order analysis, a procedure to account for second-order effects in structures by amplifying the required strengths indicated by a first-order analysis.

The appendix is organized as follows:
8.1. Limitations
8.2. Calculation Procedure

8.1. LIMITATIONS

The use of this procedure is limited to structures that support gravity loads primarily through nominally vertical columns, walls, or frames, except that it is permissible to use the procedure specified for determining $P-\delta$ effects for any individual compression member.

8.2. CALCULATION PROCEDURE

The required second-order flexural strength, M_r, and axial strength, P_r, of all members shall be determined as follows:

\[M_r = B_1 M_{nt} + B_2 M_{lt} \] (A-8-2-1a)
\[P_r = P_{nt} + B_2 P_{lt} \] (A-8-2-1b)

where

- $B_1 = \text{multiplier to account for } P-\delta \text{ effects, determined for each member subject to compression and flexure, and each direction of bending of the member in accordance with Section 8.2.1. } B_1 \text{ shall be taken as 1.0 for members not subject to compression.}$
- $B_2 = \text{multiplier to account for } P-\Delta \text{ effects, determined for each story of the structure and each direction of lateral translation of the story in accordance with Section 8.2.2.}$
- $M_r = \text{required second-order flexural strength using LRFD or ASD load combinations, kip-in. (N-mm)}$
- $M_{nt} = \text{first-order moment using LRFD or ASD load combinations, with the structure restrained against lateral translation, kip-in. (N-mm)}$
- $M_{lt} = \text{first-order moment using LRFD or ASD load combinations, due to lateral translation of the structure only, kip-in. (N-mm)}$
- $P_r = \text{required second-order axial strength using LRFD or ASD load combinations, kips (N)}$
- $P_{nt} = \text{first-order axial force using LRFD or ASD load combinations,}$
with the structure restrained against lateral translation, kips (N)

\(P_{lt} = \) first-order axial force using LRFD or ASD load combinations, due to lateral translation of the structure only, kips (N)

User Note: Equations A-8-2-1 are applicable to all members in all structures. Note, however, that \(B_1 \) values other than unity apply only to moments in beam columns; \(B_2 \) applies to moments and axial forces in components of the lateral load-resisting system (including columns, beams, bracing members and shear walls). See Commentary for more on the application of Equations A-8-2-1.

1. **Multiplier \(B_1 \) for \(P-\delta \) Effects**

The \(B_1 \) multiplier for each member subject to compression and each direction of bending of the member is calculated as follows:

\[
B_1 = \frac{C_m}{1 - \alpha P_e / P_{el}} \geq 1 \quad \text{(A-8-2-2)}
\]

where

\[\alpha = 1.00 \text{ (LRFD)} \quad \alpha = 1.60 \text{ (ASD)} \]

\(C_m = \) a coefficient assuming no lateral translation of the frame determined as follows:

(a) For beam-columns not subject to transverse loading between supports in the plane of bending,

\[
C_m = 0.6 - 0.4 \left(\frac{M_1}{M_2} \right) \quad \text{(A-8-2-3)}
\]

where \(M_1 \) and \(M_2 \), calculated from a first-order analysis, are the smaller and larger moments, respectively, at the ends of that portion of the member unbraced in the plane of bending under consideration. \(M_1/M_2 \) is positive when the member is bent in reverse curvature, negative when bent in single curvature.

(b) For beam-columns subject to transverse loading between supports, the value of \(C_m \) shall be determined either by analysis or conservatively taken as 1.0 for all cases.

\(P_{el} = \) elastic critical buckling strength of the member in the plane of bending, calculated based on the assumption of no lateral translation at the member ends, kips (N)

\[
P_{el} = \frac{\pi^2 EI^*}{(K_i L)^2} \quad \text{(A-8-2-4)}
\]

where
\[EI^* = \text{flexural rigidity required to be used in the analysis} \]
\[E = 29,000 \text{ ksi (200 000 MPa)} \]
\[I = \text{moment of inertia in the plane of bending, in.}^4 \text{ (mm}^4) \]
\[L = \text{length of member, in. (mm)} \]
\[K_1 = \text{effective length factor in the plane of bending, calculated} \]
\[\text{based on the assumption of no lateral translation at the} \]
\[\text{member ends, set equal to 1.0 unless analysis justifies a} \]
\[\text{smaller value} \]

It is permitted to use the first-order estimate of \(P_r \) (i.e., \(P_r = P_{nt} + P_{lt} \)) in Equation A-8-2-2.

2. Multiplier \(B_2 \) for \(P-\Delta \) Effects

The \(B_2 \) multiplier for each story and each direction of lateral translation is calculated as follows:

\[
B_2 = \frac{1}{1 - \frac{\alpha P_{story}}{P_{e,story}}} \geq 1 \quad (A-8-2-5)
\]

where
\[\alpha = 1.00 \text{ (LRFD) } \quad \alpha = 1.60 \text{ (ASD)} \]

\(P_{story} \) = total vertical load supported by the story using LRFD or ASD load combinations, as applicable, including loads in columns that are not part of the lateral load-resisting system, kips (N)

\(P_{e,story} \) = elastic critical buckling strength for the story in the direction of translation being considered, kips (N), determined by sidesway buckling analysis or as:

\[
P_{e,story} = R_M \frac{H L}{\Delta_H} \quad (A-8-2-6)
\]

where
\[R_M = 1 - 0.15 \left(\frac{P_{mf}}{P_{story}} \right) \quad (A-8-2-7) \]

\(L \) = story height, in. (mm)
\(P_{mf} \) = total vertical load in columns in the story that are part of moment frames, if any, in the direction of translation being considered (= 0 for braced frame systems), kips (N)
\(\Delta_H \) = first-order inter-story drift, in the direction of translation being considered, due to lateral forces, in. (mm), computed
using the stiffness required to be used in the analysis (stiffness reduced as provided in Section C2.3 when the
Direct Analysis Method is used). Where Δ_H varies over
the plan area of the structure, it shall be the average drift
weighted in proportion to vertical load or, alternatively,
the maximum drift.

$$H = \text{story shear, in the direction of translation being consid-}$$
$$\text{ered, produced by the lateral forces used to compute } \Delta_H,$$

kips (N)

User Note: H and Δ_H in Equation A-8-2-6 may be based on any
lateral loading that provides a representative value of story lat-
eral stiffness H/Δ_H.