
This standard is issued under the fixed designation D 5333; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an editorial change since the last revision or reapproval.

1. Scope *

1.1 This test method covers the determination of the magnitude of one-dimensional collapse that occurs when unsaturated soils are inundated with fluid.

1.2 This test method may be used to determine the magnitude of potential collapse that may occur for a given vertical (axial) stress and an index for rating the potential for collapse.

1.3 This test method specifies the technique for specimen preparation, apparatus, and procedure for quantifying the amount of height change associated with collapse and procedures for reporting test results.

1.4 The procedures given in this test method are applicable to both undisturbed and remolded specimens.

1.5 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only.

1.6 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only.

1.6.1 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:
D 653 Terminology Relating to Soil, Rock, and Contained Fluids
D 2216 Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock
D 2435 Test Method for One-Dimensional Consolidation Properties of Soils
D 3740 Practice for Evaluation of Agencies Engaged in the Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction

D 4829 Test Method for Expansion Index of Soils
D 6026 Practice for Using Significant Digits in Calculating and Reporting Geotechnical Test Data

3. Terminology

3.1 Refer to Terminology D 653 for standard definitions of terms. Additional terms are as follows:

3.2 Definitions of Terms Specific to This Standard:
3.2.1 collapse—decrease in height of a confined soil following wetting at a constant applied vertical stress. A collapsible soil may withstand relatively large applied vertical stress with small settlement while at a low water content, but this soil will exhibit settlement (that could be large) after wetting with no additional increase in stress. Large applied vertical stress is not necessary for collapse.

3.2.2 collapse index \((I_c)\), percent—relative magnitude of collapse determined at 200 kPa (2 tsf) and calculated using (Eq 1).

3.2.3 collapse potential \((I_e)\), percent—relative magnitude of soil collapse determined at any stress level as follows:

\[
I_e = \frac{d_f - d_o}{d_i - d_o} \times 100 = \frac{d_f - d_i}{h_o} \times 100 (1)
\]

where:

- \(d\) = dial reading, mm (in.),
- \(d_f\) = dial reading at seating stress, mm (in.),
- \(h_o\) = initial specimen height, mm (in.),
- \(d_i\) = dial reading at the appropriate stress level before wetting, mm (in.),
- \((d_f - d_o)/h_o\) = strain at the appropriate stress level after wetting, and
- \((d_i - d_o)/h_o\) = strain at the appropriate stress level before wetting.

Eq 1 may be rewritten in terms of void ratio:

\[
I_e = \frac{\Delta e}{1 + e_o} \times 100 (2)
\]

where:

- \(\Delta e\) = change in void ratio resulting from wetting, and
- \(e_o\) = initial void ratio.

or, since the test is conducted as a one-dimensional test:

\[
I_e = \frac{d_f - d_i}{d_i - d_o} \times 100 (3)
\]

4. Apparatus

4.1 A summary of changes section appears at the end of this standard.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
5. Significance and Use

5.1 Collapsible soils occur widely in the United States and worldwide. Collapsible soils are typified by low values of dry unit weight and natural water content. Engineering works founded on collapsible soils may be damaged by sudden and often large induced settlements when these soils are saturated after construction. Predicting collapse potential is important to the design of many engineering structures.

5.2 Collapse potential, I_c, is used to estimate settlement that may occur in a soil layer at a particular site. I_c is determined from (Eq 1) using a predetermined applied vertical stress and fluids applied to a soil specimen taken from the soil layer. Settlement of a soil layer for the applied vertical stress is obtained by multiplying I_c by $H/100$ where H is the thickness of the soil layer.

5.2.1 Procedures for estimating potential for collapse are uncertain because no single criterion can be applied to all collapsible soils. For example, some soils may swell after fluid is added to the specimen until sufficient vertical stress has been applied. Collapse may then occur after additional vertical stress is applied. This test method may be used to determine the collapse index, I_e, at an applied vertical stress of 200 kPa (2 tsf). I_e for smaller applied vertical stress may be estimated assuming that the soil does not swell after inundation at smaller applied vertical stress.

5.2.2 Amount of settlement depends on the extent of the wetting front and availability of water, which can rarely be predicted prior to collapse.

5.3 The collapse index, I_e, is used to measure a basic index property of soil.

5.3.1 I_e is comparable to the expansion index as measured in accordance with Test Method D 4829, and is used to describe the degree of collapse that a particular soil will exhibit under specified conditions.

5.3.2 I_e is not intended to duplicate any particular field conditions such as loading, in-place soil structure, or soil water chemistry. The test procedure maintains constant test conditions allowing direct correlation of data between organizations and direct investigation of a particular aspect of soil behavior.

5.3.3 I_e is classified in Table 1.

\[I_e = \frac{\Delta h}{h_o} \times 100 \]

where:

\[\Delta h = \text{change in specimen height resulting from wetting, mm (in.)} \]

\[h_o = \text{initial specimen height, mm (in.).} \]

4. Summary of Test Method

4.1 The test method consists of placing a soil specimen at natural water content in a consolidometer, applying a predetermined applied vertical stress to the specimen and inundating the specimen with fluid to induce the potential collapse in the soil specimen. The fluid shall be distilled-deionized water when evaluating the collapse index, I_c. The fluid may simulate pore water of the specimen or other field condition as necessary when evaluating collapse potential, I_e.

5. Significance and Use

5.1 Collapsible soils occur widely in the United States and worldwide. Collapsible soils are typified by low values of dry unit weight and natural water content. Engineering works founded on collapsible soils may be damaged by sudden and often large induced settlements when these soils are saturated after construction. Predicting collapse potential is important to the design of many engineering structures.

5.2 Collapse potential, I_c, is used to estimate settlement that may occur in a soil layer at a particular site. I_c is determined from (Eq 1) using a predetermined applied vertical stress and fluids applied to a soil specimen taken from the soil layer. Settlement of a soil layer for the applied vertical stress is obtained by multiplying I_c by $H/100$ where H is the thickness of the soil layer.

5.2.1 Procedures for estimating potential for collapse are uncertain because no single criterion can be applied to all collapsible soils. For example, some soils may swell after fluid is added to the specimen until sufficient vertical stress has been applied. Collapse may then occur after additional vertical stress is applied. This test method may be used to determine the collapse potential, I_c. Since collapsible soils are sensitive to sampling methods using fluids, samples shall be taken using dry methods. Successful dry sampling methods include the double tube auger and hand carved block samples.

5.3 The collapse index, I_e, is used to measure a basic index property of soil.

5.3.1 I_e is comparable to the expansion index as measured in accordance with Test Method D 4829, and is used to describe the degree of collapse that a particular soil will exhibit under specified conditions.

5.3.2 I_e is not intended to duplicate any particular field conditions such as loading, in-place soil structure, or soil water chemistry. The test procedure maintains constant test conditions allowing direct correlation of data between organizations and direct investigation of a particular aspect of soil behavior.

5.3.3 I_e is classified in Table 1.

<table>
<thead>
<tr>
<th>Degree of Specimen Collapse</th>
<th>Collapse Index I_e, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Slight</td>
<td>0.1 to 2.0</td>
</tr>
<tr>
<td>Moderate</td>
<td>2.1 to 6.0</td>
</tr>
<tr>
<td>Moderately severe</td>
<td>6.1 to 10.0</td>
</tr>
<tr>
<td>Severe</td>
<td>>10</td>
</tr>
</tbody>
</table>

Note: 1—Notwithstanding the statement on precision and bias contained in this test method: The precision of this test method is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies which meet the criteria of Practice D 3740 are generally considered capable of competent testing. Users of this test method are cautioned that compliance with Practice D 3740 does not ensure reliable testing. Reliable testing depends on several factors; Practice D 3740 provides a means of evaluating some of those factors.
10.2 The stress to be applied to the soil prior to wetting depends on whether I_c or I_e is to be determined as appropriate for the design situation.

10.3 Inundate the specimen with fluid 1 h after loading to the appropriate vertical stress and after recording the deformation or dial reading. Record deformation versus time at approximately 0.1, 0.25, 0.5, 1, 2, 4, 8, 15, 30 min and 1, 2, 4, 8, and 24 h or as according to Test Method D 2435 after adding fluid.

NOTE 3—In soils with high permeability, collapse may occur rapidly and time dependency may be difficult to measure.

10.3.1 Fluid shall be distilled-deionized water to determine I_c.

10.3.2 Use fluids appropriate for various site conditions or anticipated changes in groundwater characteristics to determine I_c. These fluids shall be described in the report.

10.4 Add fluid to allow for specimen wetting from the bottom only, so that air will not be trapped in the specimen.

10.5 The duration of the load increment following inundation shall be overnight or until primary consolidation according to Test Method D 2435 has been completed.

10.6 Additional vertical stress may be placed on the specimen in increments according to Test Method D 2435 as needed or until the slope of the deformation versus stress level curve is obtained. Record deformation versus time as in 10.3. Leave each load increment on overnight or until primary consolidation has been completed.

11. Report: Test Data Sheet(s)/Form(s)

11.1 The methodology used to specify how data are recorded on the data sheet(s)/form(s), as given below, is covered in 1.6.

11.2 Record as a minimum the following general information (data):

- Identification and description of the test specimen, including whether the specimen is undisturbed, remolded, or prepared in other ways,
- Initial and final water content and dry unit weight,
- Specimen dimensions,
- Description of consolidometer,
- Applied vertical stress at inundation, and
- Percent compression or strain of the specimen at each applied vertical stress prior to inundation.

11.3.1 Fig. 1 is an illustration of data from results of a test for measuring collapse potential. I_e is calculated for the applied vertical stress of 100 kPa (1 tsf) by (Eq 1):

\[I_e = (9.6 - 1.5) = 8.1 \]

where point C is at 9.6 % strain and Point B is at 1.5 % strain. Potential settlement of a soil layer 3 m (10 ft) thick with this collapse potential is $8.1 \times 3/100 = 0.24$ m (0.81 ft).

11.3.2 Collapse potential may be estimated for applied vertical stress less than 100 kPa (1 tsf) by calculating the difference in strain between the inundated (dotted) and uninundated curves. For example, collapse potential at 40 kPa (0.4 tsf) is:

\[I_e = (6.8 - 0.8) = 6.0 \]

Settlement of the soil layer is $6.0 \times 3/100 = 0.18$ m (0.6 ft).

11.4 All departures from these procedures including special loading sequences, special specimen preparation procedures, special specimen dimensions, and special wetting fluid.

11.5 Collapse index, I_c, or collapse potential, I_e, whichever is applicable as defined in Section 3.

12. Precision and Bias

12.1 Precision—Test data on precision is not presented due to the nature of the soil materials tested by this test method. It is either not feasible or too costly at this time to have ten or more laboratories participate in a round-robin testing program.

12.2 Bias—There is no accepted reference value for this test method, therefore, bias cannot be determined.

13. Keywords

13.1 collapse; collapse index; collapse potential; compressibility; consolidation; soil
SUMMARY OF CHANGES

In accordance with Committee D18 policy, this section identifies the location of changes to this standard since the last edition (D5333–92(1996)) that may impact the use of this standard.

1. 1.6 and 1.6.1 were added to address the use of significant digits.
2. Practice D 3740 and D 6026 were added to Referenced Document section.
3. Permissive language was eliminated from Section 4.1.
4. Note 1 was added to Section 5.
5. Report section was reformatted.
6. Section 12 was revised according to the D18 Standards Preparation Manual.
7. A Summary of Changes section was added.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail), or through the ASTM website (www.astm.org).